Extreme Mass Ratio Inspirals and

 Black Hole Spectroscopy

 Black Hole Spectroscopy}

Marc Casals
University College Dublin
In collaboration with S.Dolan, A.Ottewill, B.Wardell

CENTRA-Instituto Superior Técnico, 13 December 2012

Outline

1. Self-Force for EMRIs

2. Green Function
3. Numerical Method
4. Analytical Method - Spectroscopy
5. Conclusions

Motivation - Black Hole Inspirals

Supermassive ($\approx 4 \cdot 10^{6} M_{\odot}$) black hole at the

 centre of the Milky Way

Credit: UCLA

Motivation - Gravitational Waves

-Gravitational waves (ripples in spacetime) emitted during inspiral

- Evidence of their existence from binary pulsar (Nobel prize, 1993)
- Interferometers (LIGO, LISA) expected to detect GWs
- GWs are important for:
- Mapping spacetime near black holes
- Testing General Relativity
- (Observing early Universe)

Linearized Einstein Equations

- Einstein eqs. of GR: 10 coupled, highly nonlinear 2nd order PDEs

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=T_{\mu \nu}
$$

- Methods for solving the eqs. in the case of binary inspirals:
- Post-Newtonian approx.: expansion in v/c. Valid at early stages of inspiral
- Numerical Relativity: b-h masses $\frac{M}{m} \sim 1-100$?
- Linearize eqs. for Extreme Mass Ratio Inspiral: $\frac{M}{m} \sim 10^{4}-10^{8}$

Total metric $=g_{\mu \nu}+h_{\mu \nu}+O\left(\frac{m}{M}\right)^{2}$
due to M
due to m

Self-Force

- Inspiral of small mass ($\sim 10 M_{\odot}$) around super-massive Black Hole ($\sim 10^{5}-10^{9} M_{\odot}$) deviates from geodesic due to the action of its own 'regularized' field: Self-Force (DeWitt\&Brehme'60 and Mino, Sasaki, Tanaka, Quinn, Wald'97)
- Self-field is singular at the location of particle -> regularization obeying covariance and causality $h_{\alpha \beta} \rightarrow h_{\alpha \beta}^{R}$
- Alternative viewpoint: motion is geodesic in spacetime with metric of super-massive black-hole plus 'regularized' metric of small mass (Detweiler\&Whiting‘03) $g_{\alpha \beta}+h_{\alpha \beta}^{R}$
- Motion of small bodies is open fundamental problem in GR
- S-F upholds Cosmic Censorship (Cardoso\&al'11, Poisson\&al'12,...)

S-F results in Schwarzschild with other methods

- 'Redshift' parameter $d t / d \tau$ as a function of orbital frequency is gauge invariant. Agreement between S-F and post-Newtonian (Detweiler'08)
- Correction to orbital radius\&frequency of ISCO using mode-sum reg. (Barack,Sago’09)
- Correction to precession effect (rate of periastron advance) using mode-sum reg. (Barack,Damour,Sago'10)
- 'Geodesic’ S-F orbit for gravitational case using mode-sum reg. (Warburton,Ackay,Barack,Gair,Sago'11)
- Self-consistent orbit and waveform for scalar charge using 'effective source’ (Diener,Vega,Wardell,Detweiler’11)

Wave Eq.

- Gravitational wave (spin=2) eq.

$$
" \square h_{\mu \nu} "=T_{\mu \nu} \quad \square \equiv g_{\mu \nu} \nabla^{\mu} \nabla^{\nu}
$$

Similar wave eq. for emag (spin=1) and scalar (spin=0) fields

- Retarded Green function defined by

$$
\square G_{R}\left(x, x^{\prime}\right)=\delta_{4}\left(x, x^{\prime}\right) \quad \text { with causality b.c. }
$$

- S-F for scalar charge:
$f_{\mu}=q^{2}\left(\delta_{\mu}^{\nu}+v^{\nu} v_{\mu}\right) \nabla_{\nu} \int_{-\infty}^{\tau^{-}} G_{r e t}\left(z(\tau), z\left(\tau^{\prime}\right)\right) d \tau^{\prime}+$ local Global structude of $G_{r e t}$ is crucial!

Green Function

- Green function is important for:
- Calculation of S-F
- Study of classical stability of b-h's
- Evolution of initial data in b-h spacetime
- Quantum properties, eg, quantization of black hole area, 'gauge-gravity' duality,...

New Numerical method

- Kirchhoff integral: evolution of initial data in space-time of b-h

$$
\begin{aligned}
& u(x)=\int_{t=0}\left[G_{r e t}\left(x, x^{\prime}\right) \dot{u}^{i c}\left(\vec{x}^{\prime}\right)-u^{i c}\left(\vec{x}^{\prime}\right) \partial_{t} G_{r e t}\left(x, x^{\prime}\right)\right] g^{t t}\left(x^{\prime}\right) d^{3} \vec{x}^{\prime} \\
& \square u=0
\end{aligned}
$$

New Numerical method

- Kirchhoff integral: evolution of initial data in space-time of b-h
$u(x)=\int_{t=0}\left[G_{r e t}\left(x, x^{\prime}\right) \dot{u}^{i c}\left(\vec{x}^{\prime}\right)-u^{i c}\left(\vec{x}^{\prime}\right) \partial_{t} G_{r e t}\left(x, x^{\prime}\right)\right] g^{t t}\left(x^{\prime}\right) d^{3} \vec{x}^{\prime}$
母u=0
- New method: numerical evolution of a 'Peaked Gaussian':
zero
$G_{r e t}\left(x, x^{\prime \prime}\right)$

$$
\begin{aligned}
\frac{1}{\left(2 \pi w^{2}\right)^{3 / 2}} e^{-\left|\overrightarrow{x^{\prime}}-\vec{x}^{\prime \prime}\right|^{2} /\left(2 w^{2}\right)} & \approx \delta_{3}\left(x^{\prime}-x^{\prime \prime}\right) \\
w & \ll M
\end{aligned}
$$

Numerical evolution of peaked Gaussian around equator of b-h

Method of Matched Expansions

- Non-local part of S-F: $\quad \int_{-\infty}^{\tau^{-}} G_{r e t} d \tau^{\prime}$
- Matched expansions: choose $\Delta \tau$:
- before that point ('Quasilocal' region)

$$
\int_{\tau-\Delta \tau}^{\tau^{-}} G_{r e t} d \tau^{\prime}
$$

- after that point ('Distant Past’)

$$
\int_{-\infty}^{\tau-\Delta \tau} G_{r e t} d \tau^{\prime}
$$

Quasilocal - Hadamard form

$G_{\text {ret }}\left(x, x^{\prime}\right)=\underbrace{\theta(\Delta t)}_{\begin{array}{c}\neq 0 \\ \text { in the past }\end{array}}\{\underbrace{U\left(x, x^{\prime}\right) \delta(\sigma)}_{\begin{array}{r}\neq 0 \text { on light } \\ \text { cone }\end{array}}+\underbrace{V\left(x, x^{\prime}\right) \theta(-\sigma)}_{\begin{array}{c}\neq 0 \text { inside light } \\ \text { cone }\end{array}}\}$

- σ : geodesic distance between x \& x^{\prime}
- U \& V regular
- Valid in normal neighbourhood

$$
\begin{gathered}
\int_{\tau-\Delta \tau}^{\tau^{-}} G_{r e t} d \tau^{\prime}=\int_{\tau-\Delta \tau}^{\tau} V d \tau^{\prime} \\
V=\sum_{k=0}^{\infty} V_{k} \sigma^{k}
\end{gathered}
$$

- It renders regularization trivial

Distant Past: Black Hole Spectroscopy

- Multipolar decomposition:

$$
G_{r e t}\left(x, x^{\prime}\right)=\frac{1}{r r^{\prime}} \sum_{\ell=0}^{\infty}(2 \ell+1) P_{\ell}(\cos \gamma) G_{\ell}^{r e t}\left(r, r^{\prime} ; t\right)
$$

- Fourier transform:

$$
G_{\ell}^{r e t}\left(r, r^{\prime} ; t\right) \equiv \int_{-\infty+i c}^{\infty+i c} d \omega G_{\ell}\left(r, r^{\prime} ; \omega\right) e^{-i \omega t}
$$

Complex-Frequency Plane

- Residue theorem:
$G_{\ell}^{r e t}=G_{\ell}^{H F}+G_{\ell}^{Q N M}$

$G_{\ell}^{H F} \quad$ Integral along high-frequency arc. Zero in Distant Past. $G_{\ell}^{Q N M}$ Sum over residues of poles (quasinormal modes) $G_{\ell}^{B C} \quad$ Integral around branch cut

Complex-Frequency Plane

- Residue theorem:
$G_{\ell}^{r e t}=\mathbf{X}^{t F}+G_{\ell}^{Q N M}$

$G_{\ell}^{H F} \quad$ Integral along high-frequency arc. Zero in Distant Past. $G_{\ell}^{Q N M}$ Sum over residues of poles (quasinormal modes) $G_{\ell}^{B C} \quad$ Integral around branch cut

Radial Equation

- Green function modes: $G_{\ell}\left(r, r^{\prime} ; \omega\right)=\frac{R_{\ell}^{i n}\left(r_{<}, \omega\right) R_{\ell}^{u p}\left(r_{>}, \omega\right)}{W(\omega)}$
- Radial ODE ('Regge-Wheeler eq.') for the perturbation:

$$
\begin{array}{lc}
{\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V(r)\right] R_{\ell}(r, \omega)=0} & V(r)=\left(1-\frac{1}{r}\right)\left[\frac{\ell(\ell+1)}{r^{2}}+\frac{\left(1-s^{2}\right)}{r^{3}}\right] \\
r_{*}=r_{*}(r) \in(-\infty, \infty) & s=0,1,2
\end{array}
$$

- Two lin. indep. slns.:

Quasinormal Modes

- QNM frequencies: simple poles of $G_{\ell}=\frac{R_{\ell}^{i n}\left(r_{<}, \omega\right) R_{\ell}^{u p}\left(r_{>}, \omega\right)}{W(\omega)}$ in the complex- ω plane, ie, $W\left(\omega_{l n}\right)=0$
- Boundary conditions: $e^{-i \omega_{\ell n} r_{*}} \sim R_{\ell}^{i n} \propto R_{\ell}^{u p} \sim e^{+i \omega_{\ell n} r_{*}}$

$$
r_{*} \rightarrow-\infty \quad r_{*} \rightarrow \infty
$$

$\operatorname{Re}\left(\omega_{\ell n}\right)$: freq. of
Re $\left(\omega_{\ell n}\right)$ oscillation

-40
-20
20 ${ }_{40} \operatorname{Re}\left(\bar{\omega}_{\mathrm{ln}}\right)$
$\operatorname{Im}\left(\omega_{\ell n}\right)$: decay rate

Branch Cut

Branch Cut

- Ahem...what is a BC??

Branch Cut

$$
\operatorname{Im}(\omega)
$$

- Ahem...what is a BC??

Ex: $\ln \omega=\ln |\omega|+i \arg (\omega)$

$$
\arg (\omega) \in(-\pi, \pi]
$$

$$
\begin{gathered}
\Delta(\ln \omega) \\
=2 \pi
\end{gathered}
$$

Branch Cut

- Ahem...what is a BC??

Ex: $\ln \omega=\ln |\omega|+i \arg (\omega) \quad \Delta(\ln \omega)$

$$
\arg (\omega) \in(-\pi, \pi]
$$

$\operatorname{Im}(\omega)$

- BC integral $\quad G_{\ell}^{B C}=\int_{0}^{-i \infty} d \omega e^{-i \omega t} \Delta_{\ell} G$
- BC is due to non-exponential decay of potential at radial infinity:

Methods for QNMs and BC

- Large- $|\omega|$ asymptotics by analytic continuation to complex-r plane
- Small- $|\omega|$ asymptotics by 'MST method’
- Mid- $|\omega|$ by using series of confluent hypergeometric functions

$$
R_{\ell}^{u p} \propto \sum_{n=0}^{\infty} a_{n}(1-2 \nu)_{n} U(s+1-2 \nu+n, 2 s+1,-2 \nu r)
$$

New series on BC:
$\Delta R_{\ell}^{u p} \propto \sum_{n=0}^{\infty} a_{n} \frac{(-1)^{n} \Gamma(1+n-2 \nu) U(s-n+2 \nu, 2 s+1,2 \nu r)}{\Gamma(1+s+n-2 \nu) \Gamma(1-s+n-2 \nu)}$
this can be evaluated on the NIA!

Results: QNMs

- Large-n asymptotics:

$$
\begin{aligned}
& s=0,2: \quad \omega_{l n} \sim \frac{\ln 3}{4 \pi}-\left(\frac{n}{2}+\frac{1}{4}\right) i+e^{\pi i / 4} \frac{\Gamma^{4}(1 / 4)\left[(3-s) \ell(\ell+1)+(-1)^{s / 2}\right]}{72 \pi^{5 / 2} \sqrt{n}}+O\left(n^{-1}\right) \\
& s=1: \\
& \omega_{\ell n}=-\frac{i n}{2}-\underbrace{-\frac{i \lambda^{2}}{2 n}+\frac{e^{-i \pi / 4 / 41 / 2} \lambda^{3}}{2 n^{3 / 2}}+\frac{3 \pi \lambda^{4}}{4 n^{2}}+\frac{e^{i \pi / 4} \sqrt{\pi} \lambda^{2}\left[72 \lambda^{3}(\pi+\ln 4)-52 \lambda^{2}+41 \lambda+12\right]}{96 n^{5 / 2}}}_{\text {new }}+O\left(\frac{1}{n^{3}}\right) \\
& \text { - Note: highly-damped QNMs have } \\
& \begin{array}{l}
\text { been related to quantization of b-h } \\
\text { area, Hawking radiation, small } \\
\text { Scales of space-time, etc }
\end{array}
\end{aligned}
$$

Results: QNMs

- QNM yield singularity structure: $G_{r e t} \sim \delta(\sigma), \frac{1}{\sigma},-\delta(\sigma),-\frac{1}{\sigma}$ time $\quad \mathrm{X}$ caustics
due to caustic-crossing in \mathbb{S}^{2}-topology

Results: BC

- First ever analytic calculation

$$
\begin{array}{ll}
s=2, & \ell=2 \\
s=0, & \ell=1 \\
s=1, & \ell=1
\end{array}
$$

- Connexion between QNMs and BC

Results: BC

- BC gives late-time decay of initial data:

Results: Green Function, QNMs

- Scalar charge on circular geodesic at $\mathrm{r}=6 \mathrm{M}$

Results: Green Function, BC

- Mode I=0 is dominant in BC

Results: Self-Force

- Radial S-F for scalar charge ($q=1$) on circular geodesic

$$
f_{r}=\int_{-\infty}^{\tau^{-}} \partial_{r} G_{r e t}\left(z(\tau), z\left(\tau^{\prime}\right)\right) d \tau^{\prime}
$$

- Exact value (method of mode-sum regularization): 0.000167728

- Method of matched expansions (QL+QNM+BC): Rel.err. $\approx 0.001 \%$

Summary

- Spectroscopy:
- QNMs: four-fold singularity structure of Green function
- First method for the BC: new logarithmic tail
- New method for calculation of S-F using peaked Gaussian: quick and accurate
- Method of matched expansions: trivial regularization, physical insight and accurate S-F results. Only requires $\mathrm{n}=0$ for QNM and I=O for BC

Next

Next

- Gravitational case

Next

- Gravitational case
- Kerr

Next

- Gravitational case
- Kerr
- S-F stops formation of naked singularities....

Next

- Gravitational case
- Kerr
- S-F stops formation of naked singularities.... so, can it stop the end of the world on 21/12/2012 (Mayan arxiv)?

Tortuguero monument, Mexico (7th century AD)

