Self-force calculations for Kerr black hole inspirals A Review of Recent Progress

Sam Dolan

University of Southampton

@ IST, Lisbon, Jan 2012

Talk Overview

1 Introduction to Gravitational Self-Force

- Motivations
- Key ideas
- Calculation methods

2 Recent Progress

- Gauge-invariant* comparisons with PN, NR & EOB
- First self-forced evolutions
- Resonances in EMRIs
- The frontier: Kerr spacetime
 - The *m*-mode regularization method
 - Non-radiative modes & linearly-growing gauge modes
 - Latest results

Onclusion

Motivation I: EMRIs

Motivation I: EMRIs

- A typical galaxy contains:
 - **①** A massive central BH (M)
 - **2** A population of compact objects (μ) within cusp ($r_{\text{cusp}} \sim 1 \text{pc}$).
- Extreme mass-ratio $q=\mu/M=10^{-5}-10^{-8}$
- Two-body scattering of objects into nearly-parabolic orbits
- Highly eccentric $1 e \sim 10^{-6} 10^{-3}$, $p \sim 8 100M$
- Inspiral and capture if $t_{gw} \leq (1-e)t_{relax}$
- Radiation reaction reduces eccentricity, but ...
- ... inspiral orbits are still typically:
 - moderately eccentric even up to plunge
 non-equatorial (not aligned with BH spin)

Motivation II: LISA?

"The new [LISA] configuration should detect thousands of galactic binaries, tens of (super)massive black hole mergers out to a redshift of z=10 and tens of extreme mass ratio inspirals out to a redshift of 1.5 during its two year mission."

Karsten Danzmann, Aug 2011.

Motivation III: the general 2-body problem in relativity

Motivation III: the general 2-body problem in relativity

• Effective One-Body (EOB) formulation of Damour *et al.* provides a possible analytic fitting framework

Ideas I: Radiation Reaction in Electromagnetism

- An accelerated charge emits radiation
- Loss of energy \Rightarrow force acting on charge
- Interpretation: the accelerated charge interacts with its own field
- Point charge \Leftrightarrow infinite field ... mathematical problems?
- A regularization method is needed.

Ideas I: Radiation Reaction in Electromagnetism

• Dirac split the electromagnetic potential A^{μ} into 'S' and 'R' parts:

$$A_S^{\mu} = \frac{1}{2} \left(A_{\text{ret}}^{\mu} + A_{\text{adv}}^{\mu} \right)$$
$$A_R^{\mu} = \frac{1}{2} \left(A_{\text{ret}}^{\mu} - A_{\text{adv}}^{\mu} \right)$$

- 'S' for symmetric / singular
- 'R' for radiative / regular
- Self-Force from $F_{\mu} = \nabla^{\nu} F^{R}_{\mu\nu}$, where $F^{R}_{\mu\nu} = \nabla_{\mu} A^{R}_{\nu} \nabla_{\nu} A^{R}_{\mu}$

Ideas II: Self-Force in Curved Spacetime

- In flat spacetime, Green function has support on light-cone only.
- In curved spacetime, Green function also has a 'tail' within the light cone.
- Also, the light cone intersects itself (light ring at r = 3M)
- Dirac's radiative potential becomes non-causal in curved spacetimes.

Self-force Calculations

(Intersecting Light Cone)

See e.g. V. Perlick's Living Review on lensing.

• DeWitt & Brehme (1960) derived the EM SF in curved spacetime

$$ma^{\mu} = f^{\mu}_{\text{ext}} + e^{2} \left(\delta^{\mu}_{\nu} + u^{\mu} u_{\nu} \right) \left(\frac{2}{3m} \frac{df_{\text{ext}}}{d\tau} + \frac{1}{3} R^{\nu}{}_{\lambda} u^{\lambda} \right)$$
$$+ 2e^{2} u_{\nu} \lim_{\epsilon \to 0} \int_{-\infty}^{\tau - \epsilon} \nabla^{[\mu} G^{\nu]}_{\text{ret }\lambda} \left(z(\tau), z(\tau') \right) u^{\lambda} d\tau'$$

- Tail integral over past history of motion is v. difficult to compute!
- Need practical regularization schemes that avoid tail integral in this form

Ideas II: SF in Curved Spacetime: Gravitational

- Charge $e \to \text{mass } \mu$, field $A_{\mu} \to \text{metric perturbation } h_{\mu\nu}$
- Equations for (first-order in μ) 'Gravitational Self-Force' (GSF)
- Formally derived via Method of Matched Asymptotic Expansions
- Obtained by Mino, Sasaki & Tanaka, and Quinn & Wald (1997).
- Known as the MiSaTaQuWa equation
- MiSaTaQuWa equation still features a tail integral
- Need regularization schemes for practical calculations.

Ideas II: Regularization Method

- Dirac's split into R and S fields was acausal
- Alternative Detweiler-Whiting split (2003) into \tilde{S} and \tilde{R} fields is causal
- Correct 'MiSaTaQuWa' self-force is recovered from \tilde{R} part.
- \tilde{S} part not known exactly (global existence questionable), but it can be computed in vicinity of worldline via series expansions.

Sam Dolan (Southampton)

Self-force Calculations

Ideas III: Dissipative/Conservative Parts of Self-Force

- \bullet Scalar field example: Retarded and advanced fields Φ_{ret} and Φ_{adv}
- Ret. and adv. 'R' fields, $\Phi_{\text{ret}}^R = \Phi_{\text{ret}} \Phi_S$, $\Phi_{\text{adv}}^R = \Phi_{\text{adv}} \Phi_S$
- Define conservative and dissipative parts of field

$$\Phi^{\text{cons}} = \frac{1}{2} \left(\Phi^R_{\text{ret}} + \Phi^R_{\text{adv}} \right) = \frac{1}{2} \left(\Phi_{\text{ret}} + \Phi_{\text{adv}} - 2\Phi_S \right)$$

$$\Phi^{\text{diss}} = \frac{1}{2} \left(\Phi^R_{\text{ret}} - \Phi^R_{\text{adv}} \right) = \frac{1}{2} \left(\Phi_{\text{ret}} - \Phi_{\text{adv}} \right)$$

- Dissipative part does not need regularization!
- Conservative part needs knowledge of S field.
- Dissipative part \Rightarrow secular loss of energy and angular momentum.
- Conservative part \Rightarrow shift in orbital parameters, periodic.

Ideas IV: Interpretation of Gravitational Self-Force

Methods I: ℓ -mode regularization

Define
$$F_{\text{ret}/S}^{\alpha} \equiv \mu k^{\alpha\mu\nu\beta} \nabla_{\beta} \bar{h}_{\mu\nu}^{\text{ret}/S}$$
 (as fields), then write

$$F_{\text{self}} = (F_{\text{ret}} - F_{\text{S}})|_{\text{p}}$$

$$= \sum_{\ell=0}^{\infty} \left(F_{\text{ret}}^{\ell} - F_{\text{S}}^{\ell} \right) |_{\text{p}} \quad (\ell \text{-mode contributions are finite})$$

$$= \sum_{\ell=0}^{\infty} \left[F_{\text{ret}}^{\ell}(p) - AL - B - C/L \right] - \sum_{\ell=0}^{\infty} \left[F_{\text{S}}^{\ell}(p) - AL - B - C/L \right]$$

$$= \sum_{\ell=0}^{\infty} \left[F_{\text{ret}}^{\ell}(p) - AL - B - C/L \right] - D \quad (\text{where } L = \ell + 1/2)$$

- Regularization Parameters A, B, C, D calculated analytically for generic orbits in Kerr in Lorenz gauge $\bar{h}^{;\nu}_{\mu\nu} = 0$.
- Works well for spherically-symmetric spacetimes (e.g. Schw.) which allow decomposition in tensor spherical harmonics

Methods II: Puncture Schemes

- Metric perturbation $g_{\mu\nu}^{\text{Schw/Kerr}} + h_{\mu\nu}$
- Trace-reversed MP: $\bar{h}_{\mu\nu} = h_{\mu\nu} \frac{1}{2}g_{\mu\nu}h$
- Work in Lorenz gauge $\bar{h}^{;\nu}_{\mu\nu} = 0$. Four gauge constraints.
- 10 wave equations: (neglecting $(\mu/M)^2$ and higher)

$$\Box \bar{h}_{\mu\nu} + 2R^{\alpha}{}_{\mu}{}^{\beta}{}_{\nu}\bar{h}_{\alpha\beta} = -16\pi T_{\mu\nu}$$

• Delta-function source,

$$T_{\mu\nu}(x^{\alpha}) = \mu \int_{-\infty}^{\infty} (-g)^{-1/2} \delta^4 [x^{\alpha} - x_p^{\alpha}(\tau)] u_{\mu} u_{\nu} d\tau.$$

- In 1+1D, MP is C^0 on the worldline. In 2+1D, MP diverges logarithmically. In 3+1D, diverges as 1/distance.
- Idea: evolve a 'residual field' $h^{\text{res}} = h^{\text{ret}} h^{\text{punc}}$, where h^{punc} is some local approximation to $h^{\tilde{S}}$.

A (selective) review of progress since 2009

- First comparison of gauge-invariant results with Post-Newtonian theory (PN) and Numerical Relativity (NR):
 - ISCO shift due to conservative part of GSF
 - Perihelion advance of eccentric orbits
 - Benefits of using 'symmetric mass-ratio'
- 2 Calibration of Effective One-Body (EOB) theory with GSF
- **3** First 'self-forced' evolutions:
 - via method of osculating geodesics
 - with time domain code (scalar-field)

@ Resonances in EMRIs on Kerr spacetime

1. Comparisons: (I) The redshift invariant

• Circular geodesic motion on Schwarzschild at radius r > 3M,

$$E = \frac{r - 2M}{\sqrt{r(r - 3M)}}\mu, \qquad \frac{dE}{dt} = -F_t/u_0^t$$

- The dissipative components, F_t and F_r , corresponding to energy and angular momentum loss, are gauge-invariant(*).
- The conservative component F_r is gauge-dependent.
- Detweiler identified two quantities which are gauge invariant under transforms that respect the helical symmetry of the circular orbit.

1 Orbital frequency
$$\Omega \Leftrightarrow \text{radius } R \equiv (M/\Omega^2)^{1/3}$$

2 Redshift
$$z = 1/u^t$$

- \bullet Both defined w.r.t Schw. t coordinate of background spacetime.
- z(R) is a gauge-invariant relation.
- Independent results of Regge-Wheeler and Lorenz gauge calculations compared by Detweiler, and Sago & Barack (2008).

1. Comparisons: (II) The ISCO shift

- Innermost stable circular orbit (ISCO) where dE/dr = 0.
- For geodesic motion,

$$r_{\rm isco} = 6M, \qquad \Omega_{\rm isco} = \left(6^{3/2}M\right)^{-1}.$$

- The conservative part of GSF shifts the ISCO by $O(\mu)$.
- $\Delta\Omega_{\rm isco}$ is invariant under gauge transformations that respect the helical symmetry of the circular orbit.
- GSF prediction:

$$\frac{\Delta\Omega_{\rm isco}}{\Omega_{\rm isco}} = 0.4870 \mu/M$$

• Barack & Sago, PRL 102, 191101 (2009), arXiv:0902.0573.

1. Comparisons: (II) The ISCO shift

- GSF prediction must be modified for comparison with PN, because Lorenz gauge is not asymptotically-flat $(h_{tt} \sim \mathcal{O}(r^0))$.
- Apply simple monopolar gauge transformation to get:

$$\frac{\Delta\Omega_{\rm isco}}{\Omega_{\rm isco}} = 1.2512\,\mu/M$$

- A challenge: can a resummed Post-Newtonian expansion match this strong-field result?
- Challenge taken up in M. Favata, PRD **83**, 024027 (2011), arXiv:1008.4622.

1. Comparisons: (II) The ISCO shift

Method	c_{Ω}^{PN}	$\Delta_{c_{\Omega}}$
A4PN- P_A	1.132	-0.0955
A4PN-T _A	1.132	-0.0955
C_0 3PN	1.435	0.1467
e2PN-P	1.036	-0.1717
KWW-1PN	1.592	0.2726
A3PN-P	0.9067	-0.2754
A3PN-T	0.9067	-0.2754
$A4PN-P_B$	0.8419	-0.3272
A4PN-T _B	0.8419	-0.3272
j3PN-P	1.711	0.3671
j2PN-P	0.6146	-0.5088
KWW-S	0.5610	-0.5515
$C_0 2PN$	0.5833	-0.5338
E_h 3PN	0.4705	-0.6240
e3PN-P	2.178	0.7409
A2PN-P	0.2794	-0.7767
A2PN-T	0.2794	-0.7767
$E_h 2PN$	0.0902	-0.9279
$E_h 1 PN$	-0.01473	-1.011
E_h -S	-0.05471	-1.044
HH-S	-0.1486	-1.119
j1PN-P	-0.1667	-1.133
KWW-2PN	-1.542	-2.232
j-P-S	-2.104	-2.682
KWW-3PN	4.851	2.877
HH-1PN	6.062	3.844
HH-2PN	-12.75	-11.19
HH-3PN	25.42	19.32

• Table 1 in M. Favata, PRD 83, 024027 (2011), arXiv:1008.4622.

Sam Dolan (Southampton)

Self-force Calculations

1. Comparisons: (III) The periastron advance

- GR \Rightarrow periastron advance $\delta = \frac{6\pi M}{[(1-e^2)p]}$ (e.g. 43" per century for Mercury).
- Conservative part of GSF $\Rightarrow \Delta \delta \sim O(\mu)$
- $\Delta \delta < 0$ for all eccentric orbits
- $\Delta \delta$ is gauge-invariant (within restricted class of gauges) ...
- ... but its parameterization $\Delta \delta(p, e)$ is not.
- Numerical results in Barack & Sago, PRD **83**, 084023 (2011), arXiv:1101.3331.

1. Comparisons: (III) The periastron advance

- Periastron advance was recently compared between NR, PN, EOB and GSF in comparable mass regime $1/8 \le \mu/M \le 1$.
- Le Tiec et al. PRL 107, 141101 (2011) [arXiv:1106.3278]
- Remarkably, the GSF prediction works well even in comparable mass regime if we replace μ/M with symmetric mass ratio:

$$\mu/M \to \mu M/(\mu + M)^2$$

26 / 98

• Plots on next slide show $K = \Omega_{\phi}/\Omega_r = 1 + \delta/(2\pi)$.

1. Comparisons: (III) The periastron advance

From Le Tiec, Mroué, Barack, Buonanno, Pfeiffer, Sago and Taracchini, PRL **107**, 141101 (2011), arXiv:1106.3278.

Sam Dolan (Southampton)

Self-force Calculations

1. Comparisons: (III) The periastron advance

From Le Tiec, Mroué, Barack, Buonanno, Pfeiffer, Sago and Taracchini, PRL **107**, 141101 (2011), arXiv:1106.3278.

Sam Dolan (Southampton)

Self-force Calculations

2. Calibration of Effective One-Body theory

- Damour and collaborators have fed GSF results into the EOB model.
- Idea: Compare precession of small-eccentricity orbits at first-order in μ

$$\frac{\Omega_r^2}{\Omega_{\phi}^2} = 1 - 6x + \left(\frac{\mu}{M}\right)\rho(x) + O\left((\mu/M)^2\right)$$

where

$$x \equiv \left[(M + \mu) \Omega_{\phi} \right]^{2/3}$$

• PN theory gives the (weak-field) expansion

$$\rho^{PN}(x) = \rho_2 x^2 + \rho_3 x^3 + (\rho_4^c + \rho_4^{\log} \ln x) x^4 + (\rho_5^c + \rho_5^{\log} \ln x) x^5 + O(x^6) x^6 + O(x^6)$$

- ρ_2 , ρ_3 are given by 3PN.
- logarithmic contributions at 4PN and 5PN (ρ_4^{\log} and ρ_5^{\log}) have been derived by Damour
- ρ_4^c and ρ_5^c are (presently) unknown in PN.

2. Calibration of Effective One-Body theory

• Using accurate GSF results, $\{\rho_2, \rho_3, \rho_4^{\log}, \rho_5^{\log}\}$ may be tested, and the unknown parameters ρ_4^c and ρ_5^c may be constrained:

$$\rho_4^c = 69^{+7}_{-4}, \qquad \rho_5^c = -4800^{+400}_{-1200}, \qquad \rho_6^{\log} < 0.$$

- Determination of $\rho(x)$ in the range $0 \le x \le 1/6$ gives first info on strong-field behaviour of a combination of EOB functions a(u) and d(u) [where $u = G(M + \mu)/(c^2 r_{EOB})$].
- Advantage of GSF calibration: Both GSF and EOB split naturally into conservative and dissipative effects.
- GSF data for $\rho(x)$ may be fitted with simple 2-point Pade approximation that also makes use of PN information.

2. Calibration of EOB model

From Barack, Damour and Sago, Phys. Rev. D 82, 084036 (2010) [arXiv:1008.0935].

Sam Dolan (Southampton)Self-force CalculationsLisbon31 / 98

3. Self-forced evolutions

- Want to evolve self-forced orbits over 10^5 cycles!
- Pound & Poisson [PRD77, 044013 (2008)] described a method of osculating geodesics for self-forced evolutions.
- Requires a fit to GSF data over a range of (p, e) with analytic model.
- First evolutions recently performed by Warburton, Akcay, Barack, Gair & Sago [arXiv:1111.6908].
- Animations follow, showing two simulations: (i) with full GSF; (ii) with only dissipative part of GSF.

3. Self-forced evolutions

- Rather than computing GSF w.r.t. geodesics of background, the aim is to evolve self-consistently in the time domain.
- Diener, Vega, Wardell and Detweiler [arXiv:1112.4821] have looked at scalar-field case:

4. Resonances (I)

- Two timescales: (i) orbital period ~ M, (ii) radiation reaction μ^{-1} .
- Hinderer & Flanagan (2010) describe two-timescale expansion for EMRIs, using action-angle variables.
- Action : 'constants' of motion : $J_{\nu} = \left(E/\mu, L_z/\mu, Q/\mu^2\right)$
- Angle : 'phase' variables $q_{\alpha} = (q_t, q_r, q_{\theta}, q_{\phi})$.
- $q_r \to q_r + 2\pi$ as orbit goes $r = r_{\min} \to r_{\max} \to r_{\min}$ with period $\tau_r = 2\pi/\omega_r$.
- Frequencies $\omega_{\alpha}(J) = (\omega_r, \omega_{\theta}, \omega_{\phi})$
- Generic geodesic orbits on Kerr are **ergodic** (space-filling).
- Isometries of Kerr \Rightarrow (q_t, q_{ϕ}) 'irrelevant', (q_r, q_{θ}) 'relevant' params.

4. Resonances (II)

1. Geodesic approximation $(\eta = 0)$:

$$\frac{dq_{\alpha}}{d\tau} = \omega_{\alpha}(J)$$
$$\frac{dJ_{\nu}}{d\tau} = 0$$

Solution :

$$q_{\alpha}(\tau, \eta = 0) = \omega_{\alpha} \tau$$
(1)
$$J_{\nu}(\tau, \eta = 0) = \text{const.}$$
(2)

Timescale : unchanging

4. Resonances (III)

2. Adiabatic approximation:

$$\begin{array}{lcl} \displaystyle \frac{dq_{\alpha}}{d\tau} & = & \omega_{\alpha}(J) \\ \displaystyle \frac{dJ_{\nu}}{d\tau} & = & \eta \left\langle G_{\nu}^{(1)}(q_r, q_{\theta}, J) \right\rangle_{\rm orbital \ average} \end{array}$$

Solution :

$$q_{\alpha}(\tau,\eta) = \eta^{-1}\hat{q}(\eta\tau)$$
$$J_{\nu}(\tau,\eta) = \hat{J}(\eta\tau)$$

Timescale : $\tau_{rad.reac.} \sim \eta^{-1}$
3. Post-adiabatic approximation:

$$\frac{dq_{\alpha}}{d\tau} = \omega_{\alpha}(J) + \eta g_{\alpha}^{(1)}(q_r, q_{\theta}, J) + \mathcal{O}(\eta^2)
\frac{dJ_{\nu}}{d\tau} = \eta G_{\nu}^{(1)}(q_r, q_{\theta}, J) + \eta^2 G_{\nu}^{(2)}(q_r, q_{\theta}, J) + \mathcal{O}(\eta^3).$$

Two timescales : $\sim \eta^{-1}$ (secular) and ~ 1 (oscillatory).

37 / 98

4. Resonances (V)

Is adiabatic approximation justified? i.e. is it always OK to neglect fast-oscillating parts?

Consider Fourier decomposition

$$G_{\nu}^{(1)}(q_r, q_{\theta}, J) = \sum_{k_r, k_{\theta}} G_{\nu k_r, k_{\theta}}^{(1)}(J) e^{i(k_r q_r + k_{\theta} q_{\theta})}$$

and $q_r = \omega_r \tau + \dot{\omega}_r \tau^2 + \dots, q_\theta = \omega_\theta \tau + \dot{\omega}_\theta \tau^2 + \dots$

$$k_r q_r + k_\theta q_\theta = (k_r \omega_r + k_\theta \omega_\theta) \tau + (k_r \dot{\omega}_r + k_\theta \dot{\omega}_\theta) \tau^2 + \dots$$

Cannot neglect higher Fourier components if resonance condition

$$k_r\omega_r + k_\theta\omega_\theta = 0$$

is satisfied! i.e. when ω_r/ω_θ passes through low-order integer ratio.

4. Resonances (VI)

• Duration of resonance set by $(k_r \dot{\omega}_r + k_{\theta} \dot{\omega}_{\theta}) \tau^2 \sim 1$, i.e.

 $\tau_{\rm res} \sim 1/\sqrt{p\eta}$

where $p \equiv |k_r| + |k_{\theta}|, \quad \eta = \mu/M.$

• Net change in 'constants' of motion is

$$\Delta J \sim \sqrt{\eta/p}$$

• Net change in phase is

$$\Delta q \sim 1/\sqrt{\eta p}$$

- Need to know precise first-order SF and (possibly) dissipative part of 2nd-order SF to model resonance accurately.
- Without complete knowledge, a resonance effectively resets the phase and 'kicks' the orbital parameters.

4. Resonances (VII)

• Credit: Hinderer & Flanagan, arXiv:1009.4923.

- Schw. \Rightarrow separability \Rightarrow *l*-mode regularization \Rightarrow easy!
 - decompose \bar{h}_{ab} in tensor spherical harmonics $Y_{ab}^{lm(i)}$
 - use Lorenz gauge $\nabla^b \bar{h}_{ab} = 0$ with gauge constraint damping
 - solve 1+1D in time domain, or ODEs in freq. domain
 - $\bullet\,$ apply l-mode regularization:

$$F_{\mu}^{\text{self}} = \sum_{\ell=0}^{\infty} \left[F_{\mu}^{\ell, \text{ret}} - A(l+1/2) - B - C/(l+1/2) \right] - D$$

GSF on Kerr: The frontier

- Kerr \Rightarrow hard choices ... lack of separability ...
 - Teukolksy variables $\Psi_0, \Psi_4 \dots$ spin-weighted spheroidal harmonics \dots metric reconstruction in radiation gauge (Chrzanowski) \rightarrow Lorenz gauge? l = 0, 1 modes?
 - Hertz potential approach under development by Friedman et al.
 - tensor spheroidal harmonics ... [don't exist?]
 - Full 3+1D approach ... expensive!
 - m-mode + 2+1D evolution ... practical compromise.
- Proof-of-principle for *m*-mode recently established with scalar-field toy model for circular orbits on Kerr

$$\Phi_{\mathcal{R}} = \sum_{m=-\infty}^{\infty} \Phi_{\mathcal{R}}^{m} e^{im\varphi}, \quad F_{r}^{m} = q\partial_{r}\Phi_{\mathcal{R}}^{m}, \quad F_{r} = \sum_{m=-\infty}^{\infty} F_{r}^{m}$$

Puncture scheme : Scalar field implementation

- Local approximation Φ_P for Detweiler-Whiting S field Φ_S
- Covariant expansion \rightarrow power series approximation in
 - coordinate differences $\delta x^a = x^a \bar{x}^a$, where
 - x is field point, \bar{x} is worldline point
- Classification: *n*th order expansion iff

$$\Phi_P^{[n]} - \Phi_S \sim \mathcal{O}(|\delta x| \delta x^{n-2})$$

- 4th-order expansions are available [arXiv:1107.0012, arXiv:1112.6355].
- From local expansion $\Phi_P^{[n]}$ to global puncture field $\Phi_P^{[n]}$:
 - Let \bar{x} become a function of x
 - e.g. set same BL time coordinate, $\bar{t} = t$
 - Periodic continuation: e.g. $\delta \varphi^2 \to 2(1 \cos \delta \varphi) = \delta \varphi^2 + \mathcal{O}(\delta \varphi^4)$

Residual field + modal decomposition

- Introduce residual field: $\Phi_{\mathcal{R}}^{[n]} = \Phi \Phi_{\mathcal{P}}^{[n]}$
- Residual field obeys wave equation,

$$\Box \Phi_{\mathcal{R}} = S_{\text{eff}}$$

with effective source $S_{\text{eff}} = \int_{\gamma} \delta(x - \bar{x}(\tau)) d\tau - \Box \Phi_{\mathcal{R}}^n$.

• Regularity: $S_{\text{eff}} \sim \mathcal{O}\left(|\delta x|\delta x^{n-4}\right)$

Residual field + modal decomposition

- Introduce residual field: $\Phi_{\mathcal{R}}^{[n]} = \Phi \Phi_{\mathcal{P}}^{[n]}$
- Residual field obeys wave equation,

$$\Box \Phi_{\mathcal{R}} = S_{\text{eff}}$$

with effective source $S_{\text{eff}} = \int_{\gamma} \delta(x - \bar{x}(\tau)) d\tau - \Box \Phi_{\mathcal{R}}^n$.

- Regularity: $S_{\text{eff}} \sim \mathcal{O}\left(|\delta x|\delta x^{n-4}\right)$
- Decomposition in m modes:

$$\Phi_{\mathcal{R}} = \sum_{m=-\infty}^{\infty} \Phi_{\mathcal{R}}^{m} e^{im\varphi}, \quad \{\Phi_{\mathcal{P}}^{m}, S_{\text{eff}}^{m}\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \{\Phi_{\mathcal{P}}, S_{\text{eff}}\} e^{-im\varphi} d\varphi$$

• 2+1D wave equations:

$$\Box^m \Phi^m_{\mathcal{R}} = S^m_{\text{eff}}$$

Sam Dolan (Southampton)

Self-force Calculations

Mode sums and convergence

- Field is real $\Rightarrow \Phi^{-m} = \Phi^{m*}$
- SF from mode sums, e.g.

$$F_r = q \sum_{m=0}^{\infty} \partial_r \tilde{\Phi}_{\mathcal{R}}^m$$

where

$$\tilde{\Phi}_{\mathcal{R}}^{m} = \begin{cases} \Phi_{\mathcal{R}}^{m}, & m = 0\\ 2 \operatorname{Re} \left(\Phi_{\mathcal{R}}^{m} e^{im\bar{\varphi}(t)} \right), & m \neq 0 \end{cases}$$

Mode sums and convergence

- Field is real $\Rightarrow \Phi^{-m} = \Phi^{m*}$
- SF from mode sums, e.g.

$$F_r = q \sum_{m=0}^{\infty} \partial_r \tilde{\Phi}_{\mathcal{R}}^m$$

where

$$\tilde{\Phi}_{\mathcal{R}}^{m} = \begin{cases} \Phi_{\mathcal{R}}^{m}, & m = 0\\ 2\operatorname{Re} \left(\Phi_{\mathcal{R}}^{m} e^{im\bar{\varphi}(t)} \right), & m \neq 0 \end{cases}$$

- Power law convergence $F_r^m \sim m^{-\zeta}$ in large-*m* regime
- Convergence rate ζ depends on order n of puncture.

•
$$\zeta = n$$
 for n even, and $\zeta = n - 1$ for n odd.

Puncture order and m-mode convergence

For circular orbits, F_r is conservative and F_{φ} is dissipative.

punc. order	$\Phi_{\mathcal{R}}$	С	S_{eff}	Φ^m_R	F_r^m	F^m_{φ}
1	$\delta x/\left \delta x\right $	C^{-1}	$1/\delta x^2$	m^{-2}		
2	$ \delta x $	C^0	$1/ \delta x $	m^{-2}	m^{-2}	$e^{-\lambda m}$
3	$ \delta x \delta x$	C^1	$\delta x/ \delta x $	m^{-4}	m^{-2}	$e^{-\lambda m}$
4	$\left \delta x\right \delta x^{2}$	C^2	$ \delta x $	m^{-4}	m^{-4}	$e^{-\lambda m}$

World-tube construction

- Worldtube \mathcal{T} of fixed dimensions $\delta r, \, \delta \theta$
- Outside: $\Box_m \Phi^m = 0$
- Inside: $\Box_m \Phi^m_{\mathcal{R}} = S^m_{\text{eff}}$
- Across boundary $\delta \mathcal{T}$: $\Phi^m_{\mathcal{R}} = \Phi^m \Phi^m_{\mathcal{P}}$

Finite difference method in 2+1D

Spatial profile of modes: r_*

Sam Dolan (Southampton) Sel

Self-force Calculations

Spatial profile of modes: θ

Lisbon 50 / 98

Sam Dolan (Southampton)

Spatial profiles: r_* and θ (m = 0)

Spatial profiles: r_* and θ (m = 1)

Spatial profiles: r_* and θ (m = 5)

Spatial profiles: r_* and θ (m = 10)

Time evolution of m-modes on worldline

Sam Dolan (Southampton)

Self-force Calculations

Lisbon 55 / 98

Low-m modes and power law relaxation

- \bullet Low-m modes take longest to relax
- Fit power-law decay model
- e.g. for m = 0, $\tilde{\Phi}^m_{\mathcal{R}}(t) = \tilde{\Phi}^m_{\mathcal{R}}(\infty) + c_2 t^{-\eta} + \dots$

Richardson extrapolation (I)

Extrapolation to infinite resolution

• Results depends on grid resolution x, e.g. :

$$\triangle t = xM, \quad \triangle r_* = xM, \quad \triangle \theta = \pi x/6$$

• Second-order-accurate FD method \Rightarrow error $\mathcal{O}(x^2)$

$$\Psi^m(x) = \Psi^m(x=0) + c_2 x^2 + c_3 x^3 + \dots$$

57 / 98

• Fit results of runs at various resolutions to this model, and extrapolate to x = 0

Richardson extrapolation (II)

Richardson extrapolation (III)

Modal convergence: F_{ϕ}^{m}

• Exponential convergence of dissipative component

Modal convergence: F_r^m

• Power-law convergence of conservative component

Sam Dolan (Southampton)

Modal convergence: F_r^m 4th-order puncture ... m^{-4} convergence

Modal convergence: F_r^m rescaled variable $m^4 F_r^m$

Results: scalar-field SF on Kerr

 F_r for circular orbits in equatorial plane

Radial component of SF, $(M^2/q^2)F_r^{\text{self}}$						
	$r_0 = 6M$		$r_0 = 10M$		$r_0 = r_{\rm isco}$	
a = -0.9M	_		4.941(1)	$\times 10^{-5}$	9.6074(7)	$> 10^{-5}$
	_		4.39995	×10	9.607001	×10
a = -0.7M	_		4.102(1)	$\times 10^{-5}$	1.1077(2)	$\times 10^{-4}$
	_		4.100712		1.107625	
a = -0.5M	_		3.290(1)	$\times 10^{-5}$	1.2751(2)	$\times 10^{-4}$
	_		3.28942		1.275170	
a = 0M	1.6771(2)	$\times 10^{-4}$	1.379(1)	$\times 10^{-5}$	1.6771(2)	$\times 10^{-4}$
	1.677283	× 10	1.378448		1.677283	
a = +0.5M	-2.423(4)	$\times 10^{-5}$	-4.028(9)	$\times 10^{-6}$	-6.925(5)	$\times 10^{-5}$
	-2.421685	×10	-4.03517		-6.922147	
a = +0.7M	-9.530(3)	$\times 10^{-5}$	-1.0913(9)	$\times 10^{-5}$	-1.0886(4)	$\times 10^{-3}$
	-9.528095		-1.091819		-1.088457	
a = +0.9M	-1.6458(5)	$\times 10^{-4}$	-1.767(1)	$\times 10^{-5}$	-1.1344(9)	$\times 10^{-2}$
	-1.645525		-1.768232		-1.133673	

Results: scalar-field SF on Kerr

 F_{ϕ} for circular orbits in equatorial plane

Angular component of SF, $-(M/q^2)F_{\phi}^{\text{self}}$					
	$r_0 = 6M$	$r_0 = 10M$	$r_0 = r_{\rm isco}$		
a = -0.9M	_	$1.41470(1)$ $\times 10^{-3}$	$2.18835(1)$ $\times 10^{-3}$		
	-	1.414708	2.188351		
a = -0.7M	_	1.35624(1)	$2.57803(1)$ $\times 10^{-3}$		
	-	1.356244 $^{\times 10}$	2.578045		
a = -0.5M	_	1.30226(1)	3.08354(1)		
	—	1.302267	3.083542		
a = 0M	$5.304230(3)$ $\times 10^{-3}$	$1.18592(1)$ $\times 10^{-3}$	$5.30423(1)$ $\times 10^{-3}$		
	5.3042317	1.185926 × 10	5.304232 × 10		
a = +0.5M	$4.230745(3)$ $\times 10^{-3}$	1.09349(1)	$1.18357(4) \times 10^{-2}$		
	4.230749	1.093493	1.183567		
a = +0.7M	$3.928695(3)$ $\times 10^{-3}$	$1.06216(1)$ $\times 10^{-3}$	$1.94873(1)$ $\times 10^{-2}$		
	3.928698	1.062163 × 10	1.948731 × 10		
a = +0.9M	$3.676723(8) \times 10^{-3}$	1.03344(1)	$4.5079(2)$ $\times 10^{-2}$		
	3.676726	1.0334444	4.508170 × 10		

GSF on Kerr

- So much for the scalar field ... what about the interesting case?
- Einstein equations :

$$G_{ab} \equiv R_{ab} - \frac{1}{2}g_{ab}R = 8\pi T_{ab}$$

- Vacuum background + stress-energy $T_{ab} \propto$ 'small' parameter $\mu = m/M$
- Metric split : background + perturbation :

$$g_{ab} = \hat{g}_{ab} + \mu \mathbf{h}_{ab}$$

• Trace-reversed perturbation \bar{h}_{ab} :

$$\bar{h}_{ab} = h_{ab} - \frac{1}{2}g_{ab}h$$

Sam Dolan (Southampton)

Gravitational SF on Kerr

• Linearized equations:

$$\Delta_L \bar{h}_{ab} \equiv \nabla^c \nabla_c \bar{h}_{ab} + 2 R^c{}_a{}^d{}_b \bar{h}_{cd} + g_{ab} \mathcal{Z}^c_{;c} - \mathcal{Z}_{a;b} - \mathcal{Z}_{b;a} = -16\pi T_{ab}$$

where

$$\mathcal{Z}^b \equiv \nabla_a \bar{h}^{ab}$$

- Mixed hyperbolic-elliptic type equations.
- Impose Lorenz gauge conditions $\mathcal{Z}_a = 0 \Rightarrow \Box \mathcal{Z}_a = 0$.
- How to enforce gauge conditions? Gauge-constraint damping [Gundlach *et al.* '05]

$$\nabla^c \nabla_c \bar{h}_{ab} + 2 R^c{}^a{}^b{}_b \bar{h}_{cd} + n_a \mathcal{Z}_b + n_b \mathcal{Z}_a = -16\pi T_{ab}.$$

• *m*-mode decomposition:

$$\bar{h}_{ab} = \alpha_{ab}(r,\theta)u_{ab}(r,\theta,t)e^{im\phi},$$
 (no sum)

• 10 wave equations:

$$\Box_{sc}u_{ab} + \mathcal{M}_{ab}(u_{cd,t}, u_{cd,r_*}, u_{cd,\theta}, u_{cd}) = S_{ab}$$

2+1D Wave Equations (Schw.)

$$f\Box_{sc}u_{ab} + \mathcal{M}_{ab}(\dot{u}_{cd,t}, u_{cd,r*}, u_{cd,\theta}, u_{cd}) = 0$$

$$\begin{split} \mathcal{M}_{00} &= \frac{2\left(2r^2(\dot{u}_{01} - u'_{00}) + u_{00} - u_{11}\right)}{r^4} + \frac{4f\left(u_{00} - u_{11}\right)}{r^3} + \frac{2f^2\left(u_{22} + u_{33}\right)}{r^3} \\ \mathcal{M}_{01} &= -\frac{2f^2\left(\cos\theta u_{02} + imu_{03}\right)}{r^2\sin\theta} + \frac{2(\dot{u}_{00} + \dot{u}_{11} - 2u'_{01})}{r^2} - \frac{2f^2\left(u_{01} + \partial_{\theta} u_{02}\right)}{r^2} \\ \mathcal{M}_{02} &= -\frac{f\left(u_{02} + 2im\cos\theta u_{03}\right)}{r^2\sin^2\theta} + \frac{2(\dot{u}_{12} - u'_{02})}{r^2} + \frac{f\left[(4 + r)u_{02} + 2r\partial_{\theta} u_{01}\right]}{r^3} - \frac{f^2u_{02}}{r^2} \\ \mathcal{M}_{03} &= -\frac{f\left(u_{03} - 2im\cos\theta u_{02}\right)}{r^2\sin^2\theta} + \frac{2fimu_{01}}{r^2\sin\theta} + \frac{2(\dot{u}_{13} - u'_{03})}{r^2} + \frac{f\left(4 + r\right)u_{03}}{r^3} - \frac{f^2u_{03}}{r^2} \\ \mathcal{M}_{11} &= -\frac{4f^2(\cos\theta u_{12} + imu_{13})}{r^2\sin\theta} + \frac{2[2r^2(\dot{u}_{01} - u'_{11}) + u_{11} - u_{00}]}{r^4} - \frac{4f\left(u_{00} - u_{11}\right)}{r^3} \\ - \frac{2f^2(2ru_{11} + u_{22} + u_{33} + 2r\partial_{\theta} u_{12})}{r^3} + \frac{2f^3\left(u_{22} + u_{33}\right)}{r^2} \\ \mathcal{M}_{12} &= -\frac{f\left(u_{12} + 2im\cos\theta u_{13}\right)}{r^2\sin\theta} - \frac{2f^2\left[\cos\theta\left(u_{22} - u_{33}\right) + imu_{23}\right]}{r^2} + \frac{2(\dot{u}_{02} - u'_{12})}{r^2} \\ + \frac{f\left[(4 + r)u_{12} + 2r\partial_{\theta} u_{11}\right]}{r^3} - \frac{f^2(5u_{12} + 2\partial_{\theta} u_{22})}{r^2} \end{split}$$

Sam Dolan (Southampton)

Self-force Calculations

2+1D Wave Equations (Schw.)

$$f\Box_{sc}u_{ab} + \mathcal{M}_{ab}(\dot{u}_{cd,t}, u_{cd,r*}, u_{cd,\theta}, u_{cd}) = 0$$

$$\begin{aligned} \mathcal{M}_{13} &= -\frac{f(u_{13} - 2im\cos\theta u_{12})}{r^2\sin^2\theta} - \frac{2f[2f\cos\theta u_{23} + im(fu_{33} - u_{11})]}{r^2\sin\theta} + \frac{2(\dot{u}_{03} - u_{13}')}{r^2} \\ &+ \frac{f(4+r)u_{13}}{r^3} - \frac{f^2(5u_{13} + 2\partial_\theta u_{23})}{r^2} \\ \mathcal{M}_{22} &= -\frac{2f[u_{22} - u_{33} + 2im\cos\theta u_{23}]}{r^2\sin^2\theta} + \frac{2(u_{00} - u_{11})}{r^3} + \frac{2f(u_{11} + u_{22} + 2\partial_\theta u_{12})}{r^2} \\ &- \frac{2f^2(u_{22} + u_{33})}{r^2} \\ \mathcal{M}_{23} &= -\frac{2f[2u_{23} - im\cos\theta(u_{22} - u_{33})]}{r^2\sin^2\theta} - \frac{2f(\cos\theta u_{13} - imu_{12})}{r^2\sin\theta} + \frac{2f(u_{23} + \partial_\theta u_{13})}{r^2} \\ \mathcal{M}_{33} &= \frac{2f(u_{22} - u_{33} + 2im\cos\theta u_{23})}{r^2\sin^2\theta} + \frac{4f(\cos\theta u_{12} + imu_{13})}{r^2\sin\theta} + \frac{2(u_{00} - u_{11})}{r^3} \\ &+ \frac{2f(u_{11} + u_{33})}{r^2} - \frac{2f^2(u_{22} + u_{33})}{r^2}. \end{aligned}$$

Sam Dolan (Southampton)

Self-force Calculations

Lisbon 70 / 98
Gauge constraint damping

• Imperfect, gauge-violating initial data

$$\Rightarrow \mathcal{Z}^a \equiv \nabla_b \bar{h}^{ab} \neq 0.$$

• Gauge-violation itself obeys a wave equation:

$$\Box \mathcal{Z}^a = 0.$$

- How to drive system towards Lorenz gauge solution $\mathcal{Z}^a = 0$?
- Gauge Constraint Damping: add extra term to wave equations featuring gauge violation vector Z_a , i.e.

$$\Box \bar{h}_{ab} + 2R^c{}_a{}^d{}_b \bar{h}_{cd} + (n_a \mathcal{Z}_b + n_b \mathcal{Z}_a) = 0.$$

so that \mathcal{Z}_a obeys a damped wave equation

2nd-order puncture scheme

• Barack, Golbourn & Sago (2007) give a 2nd-order puncture formulation:

$$\bar{h}_{ab}^{P}(x) = \frac{\mu}{\epsilon_{P}^{[2]}} \chi_{ab}, \qquad \chi_{ab} = \left[u_a u_b + (\Gamma_{ad}^c u_b + \Gamma_{bd}^c u_a) u_c \delta x^d \right]_{x=\bar{x}}$$

• For circular orbits in equatorial plane, this reduces to

$$\begin{array}{rcl} \chi_{00} & = & C_{00} + D_{00}\delta r \\ \chi_{01} & = & D_{01}\sin\delta\phi \\ \chi_{03} & = & C_{03} + D_{03}\delta r \\ \chi_{13} & = & D_{13}\sin\delta\phi \\ \chi_{33} & = & C_{33} + D_{33}\delta r \end{array}$$

72 / 98

2nd-order puncture scheme

- Effective source: $S_{ab}^{\text{eff}} = \Box \bar{h}_{ab}^P + 2 R^c{}_a{}^d{}_b \bar{h}_{cd}^P$
- $\bullet~m\text{-mode}$ decomposition: $\bar{h}^{P(m)}_{ab}$ and $S^{\mathrm{eff}(m)}_{ab}$
- Puncture and source found in terms of 'symmetric' elliptic integrals $I_1^m, \ldots, I_5^m \ldots$
- ... and antisymmetric integrals $J_1^m, \ldots, J_5^m \ldots$

$$\begin{split} \int_{-\pi}^{\pi} \epsilon_P^{-3} \sin \delta \phi \, e^{-im\delta \phi} d(\delta \phi) &= \frac{-i}{B^{3/2} \rho} \left[q_{1K}^m K(i/\rho) + \rho^2 q_{1E}^m E(i/\rho) \right] \\ \int_{-\pi}^{\pi} \epsilon_P^{-3} \sin \delta \phi \, \cos \delta \phi \, e^{-im\delta \phi} d(\delta \phi) &= \frac{-i\gamma}{B^{3/2}} \left[q_{2K}^m K(\gamma) + q_{2E}^m E(\gamma) \right] \\ \int_{-\pi}^{\pi} \epsilon_P^{-5} \sin \delta \phi \, \cos^2(\delta \phi/2) \, e^{-im\delta \phi} d(\delta \phi) &= \frac{-i\gamma}{B^{5/2}} \left[q_{3K}^m K(\gamma) + \rho^{-2} q_{3E}^m E(\gamma) \right] \\ \int_{-\pi}^{\pi} \epsilon_P^{-5} \sin \delta \phi \, \sin^2(\delta \phi) \, e^{-im\delta \phi} d(\delta \phi) &= \frac{-i}{B^{5/2} \rho} \left[q_{4K}^m K(i/\rho) + \rho^2 q_{4E}^m E(i/\rho) \right] \\ \int_{-\pi}^{\pi} \epsilon_P^{-5} \sin \delta \phi \, \sin^2(\delta \phi/2) \, e^{-im\delta \phi} d(\delta \phi) &= \frac{-i\gamma^2}{B^{5/2} \rho} \left[q_{5K}^m K(i/\rho) + \rho^2 q_{5E}^m E(i/\rho) \right] \end{split}$$

• Wardell and co. developing a 4th-order scheme

Sam Dolan (Southampton)Self-force CalculationsLisbon73 / 98

Metric Perturbations : Time evolution Regularized field at particle in circular orbit: $r_0 = 7M$, m = 2

Sam Dolan (Southampton)Self-force CalculationsLisbon74 / 98

Gauge Violation : Time evolution $r_0 = 7M, m = 2$

Metric Perturbations : Angular Profile $r_0 = 7M, m = 2$

Metric Perturbations : Angular Profile $r_0 = 7M, m = 2$

Sam Dolan (Southampton)

l-mode and m-modes

- Project out: *m*-modes $u_{ab}^m(t,r,\theta)$ onto lm modes $h_{lm}^{(i)}(t,r)$ of Barack/Lousto/Sago.
- Use tensor spherical harmonics $i = 1 \dots 10$,

$$h_{lm}^{(1)}(r,t) = 2\pi \int_0^\pi \sin x \left(u_{00} + u_{11}\right) Y_{lm}^*(x) dx \tag{3}$$

$$h_{lm}^{(2)}(r,t) = 2\pi \int_0^\pi \sin x \, 2u_{01} Y_{lm}^*(x) dx \tag{4}$$

$$h_{lm}^{(3)}(r,t) = 2\pi \int_0^\pi \sin x \left(u_{00} - u_{11} \right) Y_{lm}^*(x) dx \tag{5}$$

$$h_{lm}^{(4)}(r,t) = 4\pi \int_0^\pi \left[\sin x \, u_{02} \, \partial_x - im u_{03}\right] Y_{lm}^* dx \tag{6}$$

$$h_{lm}^{(5)}(r,t) = 4\pi \int_0^\pi \left[\sin x \, u_{12} \, \partial_x - im u_{13}\right] Y_{lm}^* dx \tag{7}$$

$$h_{lm}^{(6)}(r,t) = 2\pi \int_0^\pi \sin x \left(u_{22} + u_{33}\right) Y_{lm}^* dx \tag{8}$$

$$n_{lm}^{(7)}(r,t) = 2\pi \int_0^\pi \left[\sin x(u_{22} - u_{33})D_2 + 2u_{23}D_1\right] Y_{lm}^* dx \tag{9}$$

Sam Dolan (Southampton)

Self-force Calculations

Lisbon 78 / 98

Comparison with l-modes

Projection from m modes onto lm modes of Barack/Lousto/Sago

	l = 2, m = 2	
i = 1	3.1246	-0.2630i
	3.1246	-0.2632i
i = 2	-0.2316	0.9755i
	-0.2312	0.9758i
i = 3	5.3159	0.6164i
	5.3162	0.6162i
i = 4	-0.9269	9.4275i
	-0.9249	9.4292i
i = 5	-2.3297	-2.5279i
	-2.3310	-2.5279i
i = 6	1.5471	0.6009i
	1.5468	0.6006i
i = 7	-5.3326	-5.2205i
	-5.3319	-5.2190i

Problem: Time Evolution of m = 0 mode

Radial Profile : m = 0 mode

Radial Profile : m = 0 mode

Radial Profile : m = 0 mode

The low multipoles stability problem

- The growing solutions arise even for vacuum perturbations.
- The growing solutions are (locally) Lorenz-gauge
- They are homogeneous and pure-gauge: $h_{ab} = \xi_{a;b} + \xi_{b;a}$
- They are 'scalar' gauge modes: $\xi_a = \Phi_{;a}$.
- The growing solutions satisfy ingoing conditions at horizon:

$$u \sim t + 2\ln(1 - 2/r) \qquad \Rightarrow \qquad \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial r_*}\right)u = 0$$

- The growing solutions are traceless $h = -\bar{h}_a^a = 0$.
- The problem is entirely in l = m = 0 and l = m = 1 modes.
- Q. Why has no-one evolved Schw. l = 0 and l = 1 modes in time-domain?
- A. Negative potentials (r < 3M), unstable evolutions.

Sam Dolan (Southampton)

Lorenz-Gauge Monopole Modes

• Pure-gauge modes generated by gauge vectors ξ_a

$$h_{ab} = \xi_{(a;b)} \quad \Rightarrow \quad \bar{h}_{ab} = \xi_{(a;b)} - \frac{1}{2}g_{ab}\xi^c_{;c}$$

• Lorenz-gauge $\bar{h}_{ab}^{;b} = 0 \Rightarrow \xi_{a;b}{}^{b} = 0$

- Two scalar monopole gauge modes $\xi_a = \Phi_{;a} \Rightarrow (\Box \Phi)_{;a} = 0 \Rightarrow \Box \Phi = \{0, \text{const.}\}$
- Trace : $h = \xi^a_{;a} = \Box \Phi = \{0, \text{const}\}$ \Rightarrow Trace-free, static scalar gauge mode $\Phi_0 = \frac{1}{2} \ln f$
- Pseudo-static mode $\Phi = t \times \Phi_0 = \frac{t}{2} \ln f$, $\Box \Phi = 0$,

$$u_{00}, u_{11}, u_{22} \propto t, \qquad u_{01} \neq 0.$$

Sam Dolan (Southampton)

Pseudo-static modes

- Pseudo-static (i.e. linearly-growing) locally Lorenz-gauge modes in monopole
- How do they arise in time domain?
- To see, use conservation laws (due to symmetries of Ricci-flat background) to reduce degrees of freedom.
- Monopole: Four coupled 2nd order equations + two gauge constraints + one conservation equation.
- After reducing degrees of freedom, find wave equation with negative potential.

Conserved quantities in non-radiative multipoles (I)

• Symmetries: Background spacetime has Killing vectors X_a :

$$\nabla_a X_b + \nabla_b X_a = 0$$

• Stress-energy is conserved, $\nabla_a T^{ab} = 0$, so we can construct a conserved vector:

$$j^a \equiv T^{ab} X_b \quad \Rightarrow \quad \nabla_a \, j^a = 0.$$

• The vector $j_a = (-16\pi)^{-1} \mathcal{W}_{ab} X^b$ can be written

$$j^a = \nabla_b F^{ab}$$
, where $F_{ab} = -F_{ba}$

• i.e. the divergence of an antisymmetric tensor F^{ab} where

$$(-16\pi)F_{ab} = \bar{h}_{ac;b}X^c - \bar{h}_{bc;a}X^c - \bar{h}_{ac}X^c_{;b} + \bar{h}_{bc}X^c_{;a}$$

 \bullet Apply Stokes' theorem \Rightarrow Conserved integrals on two-surfaces

Conserved quantities in non-radiative multipoles (II)

• Gauss's theorem:

$$\int_{\Sigma_1} j^a d\Sigma_a = \int_{\Sigma_2} j^a d\Sigma_a$$

• Stokes' theorem $(j^a = F^{ab}_{;b})$:

Conservation Law (III)

- $\bullet\,$ Integrate on constant-t hypersurfaces, on concentric spheres:
- $X_a^{(t)} \Rightarrow \text{Energy } \mathcal{E}, \quad X_a^{(\phi)} \Rightarrow \text{Ang. Mom. } \mathcal{L}_z \text{ in perturbation}$
- Ang. mom. in l = 1 odd-parity sector, energy is in monopole (l = 0), $4\pi \left[r^2 F_{01}^{(t)} \right]_{r_1}^{r_2} = \begin{cases} \mathcal{E} \equiv -u_t, & r_1 < r_0 < r_2, \\ 0, & \text{otherwise.} \end{cases}$
- Locally conserved quantity in monopole (l = m = 0) equations:

$$r^{2}\left(\bar{h}_{tt,r} - \bar{h}_{tr,t}\right) - 2f^{-1}\bar{h}_{tt} + 2f\bar{h}_{rr} = \begin{cases} -4\mathcal{E}, & r > r_{0}, \\ 0, & r < r_{0}. \end{cases}$$

Monopole equations

- Monopole has four equations $(u_{00}, u_{01}, u_{11}, u_{22} = u_{33})$ + two gauge constraints.
- Trace equation evolve stably

• Use conserved quantity
$$C = \begin{cases} -4\mathcal{E} & r < r_0 \\ 0 & r > r_0 \end{cases}$$

 $\bullet\,$ Hierarchical system of equations for $\{H,X,Y\}$

$$D^{2}H = 0$$

$$D^{2}X = \frac{2f}{r^{4}}H - \frac{3fC}{r^{3}}$$

$$\left[D^{2} - \frac{2f}{r^{2}}\left(1 - \frac{4M}{r}\right)\right]Y = -\frac{4f}{r^{2}}H + \frac{2f}{r}C$$

where $D^{2} = -\partial_{t}^{2} + \partial_{r^{*}}^{2} - 2fM/r^{3}$
• $H = r\bar{h}_{a}^{a}, X = (2rf)^{-1} [u_{11} - (2r-3)u_{00}], Y = rf^{-1}(u_{00} - u_{11}).$

Monopole equations

- H and X equations evolve stably. Y equation does not.
- Y equation resembles a Regge-Wheeler equation

$$\left[-\frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial r_*^2} - V_{12}(r)\right]Y = \dots$$

where

$$V_{ls}(r) = f\left(\frac{l(l+1)}{r^2} - \frac{2M(1-s^2)}{r^3}\right)$$

i.e. here $\ l=1, \ s=2$.

- Potential turns negative within $r < 3M \Rightarrow$ growing modes.
- In principle, Y can be recovered from H, X by integrating conservation law on spatial slices:

$$\frac{\partial}{\partial r^*}(rY) = r[C - 2X - fH].$$

Sam Dolan (Southampton)

Challenges for time-domain Lorenz gauge formulation

- How do we evolve l = 0, l = 1 modes in time domain in 1+1D?
- e.g. how do we eliminate trace-free, massless, locally-Lorenz gauge modes? (in monopole and dipole)
- How do we enforce the physical boundary condition at the horizon?

Ideas \ldots :

1 Use of generalized Lorenz gauge to promote stability,

$$\bar{h}^{;\nu}_{\mu\nu} = H_{\mu}(\bar{h}_{\alpha\beta}; r).$$

- e Horizon-penetrating coordinates? (e.g. ingoing Eddington-Fink.). Hyperboloidal slicing?
- Sestricted set of variables, with reconstruction of metric by integrating first-order conservation equations?

Generalized Lorenz gauge

• I have tried a generalized Lorenz gauge (GLG) of the form

$$\bar{h}_{ab}^{;b} = H_a(h_{tr})$$

- For circular orbits, we want the monopole part of h_{tr} to be zero.
- I can achieve stable evolutions if I make H_a proportional to an ingoing null vector.
- With analytically-known l = 0, m = 0 monopole as initial data, the 2+1D scheme evolves stably with $h_{tr} \rightarrow 0$ as grid spacing $\rightarrow 0$.
- I have not yet found a GLG which stabilizes the m = 1, l = 1 even-parity dipole ...
- ... but since the undesirable mode grows linearly (whereas physical part $\sim \exp(im\Omega t)$), I can eliminate it:

$$h \rightarrow -\frac{1}{\Omega^2} \frac{\partial^2}{\partial t^2} h$$

Sam Dolan (Southampton)

- These 'tricks' now make it possible to compute Lorenz-gauge GSF for circular orbits, using 2+1D approach.
- With a second-order puncture, and max. resolution $\Delta r_* = M/16$, I can compute F_r to accuracy greater than 0.05%, for $r_0 = 6M$ on Schw.
- I have written the first Lorenz-gauge 2+1D Kerr code.
- To validate, may compare F_t against the energy fluxes computed via the Teukolsky formalism

Recent progress: Dissipative GSF in Kerr

- $m = 2 \mod (\text{radiative})$
- Showing results of various grid resolutions $x \equiv M/n$.

Recent progress: Dissipative GSF in Kerr

- 2nd-order puncture $\Rightarrow S \sim \ln(|r r_0|) \Rightarrow x^2 \ln x$ convergence.
- 0.4% here error still unexplained ...

Summary of progress: m-mode 2 + 1D method

- Scalar field, first-order puncture: Barack & Golbourn [arXiv:0705.3620].
- Second-order GSF formulation: Barack, Golbourn & Sago [arXiv:0709.4588].
- Scalar-field, fourth-order punc, Schw.: Dolan & Barack [arXiv:1010.5255]
- Scalar-field, Kerr, circ orbits: Dolan, Wardell & Barack [arXiv:1107.0012]
- Scalar-field, Kerr, eccentric orbits: Thornburg (in progress)
- GSF, Schw, circ. orbits, 2nd order: Dolan & Barack (in progress)
- GSF, Kerr, circ. orbits, 4th order: coming soon (I hope!).

Summary

- GSF programme for black hole inspirals recently came-of-age (in 2009) with comparison of physically-meaningful numerical results on Schwarzschild with other methodologies.
- First comparisons of GSF with PN, EOB and NR have been successful.
- First 'self-forced' orbits and waveforms produced recently (Gair *et al.*)
- Very interesting resonance phenomenon (Hinderer & Flanagan) expected for EMRIs on Kerr. Details require Kerr GSF.
- First GSF calculations on Kerr underway (Dolan 2011; Friedman 2011).
- Second-order formalism is under discussion; numerical work someway off.
- Lots of interesting calculations still to do!