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Motivation I: EMRIs
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Motivation I: EMRIs

A typical galaxy contains:
1 A massive central BH (M)
2 A population of compact objects (µ) within cusp (rcusp ∼ 1pc).

Extreme mass-ratio q = µ/M = 10−5 — 10−8

Two-body scattering of objects into nearly-parabolic orbits

Highly eccentric 1− e ∼ 10−6 – 10−3, p ∼ 8 – 100M

Inspiral and capture if tgw ≤ (1− e)trelax
Radiation reaction reduces eccentricity, but ...

... inspiral orbits are still typically:
1 moderately eccentric even up to plunge
2 non-equatorial (not aligned with BH spin)
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Motivation II: LISA?

Sam Dolan (Southampton) Self-force Calculations Lisbon 5 / 98



Motivation II: re-scoped LISA!

“The new [LISA] configuration should detect thousands of galactic
binaries, tens of (super)massive black hole mergers out to a redshift of
z=10 and tens of extreme mass ratio inspirals out to a redshift of 1.5
during its two year mission.”

Karsten Danzmann, Aug 2011.
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Motivation III: the general 2-body problem in relativity
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Motivation III: the general 2-body problem in relativity

Effective One-Body (EOB) formulation of Damour et al. provides
a possible analytic fitting framework
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Ideas I: Radiation Reaction in Electromagnetism

An accelerated charge emits radiation
Loss of energy ⇒ force acting on charge
Interpretation: the accelerated charge interacts with its own field
Point charge ⇔ infinite field ... mathematical problems?
A regularization method is needed.
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Ideas I: Radiation Reaction in Electromagnetism

Dirac split the electromagnetic potential Aµ into ‘S’ and ‘R’ parts:

AµS =
1
2
(
Aµret +Aµadv

)

AµR =
1
2
(
Aµret −Aµadv

)

‘S’ for symmetric / singular
‘R’ for radiative / regular
Self-Force from Fµ = ∇νFRµν , where FRµν = ∇µARν −∇νARµ
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Ideas II: Self-Force in Curved Spacetime

Flat Curved 

In flat spacetime, Green function has support on light-cone only.
In curved spacetime, Green function also has a ‘tail’ within the
light cone.
Also, the light cone intersects itself (light ring at r = 3M)
Dirac’s radiative potential becomes non-causal in curved
spacetimes.
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(Intersecting Light Cone)

See e.g. V. Perlick’s Living Review on lensing.
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Ideas II: SF in Curved Spacetime: Electromagnetism

DeWitt & Brehme (1960) derived the EM SF in curved spacetime

maµ = fµext + e2 (δµν + uµuν)
(

2
3m

dfext

dτ
+

1
3
Rνλu

λ

)

+2e2uν lim
ε→0

∫ τ−ε

−∞
∇[µG

ν]
retλ

(
z(τ), z(τ ′)

)
uλdτ ′

Tail integral over past history of motion is v. difficult to compute!
Need practical regularization schemes that avoid tail integral in
this form
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Ideas II: SF in Curved Spacetime: Gravitational

Charge e → mass µ, field Aµ → metric perturbation hµν

Equations for (first-order in µ) ‘Gravitational Self-Force’ (GSF)

Formally derived via Method of Matched Asymptotic Expansions

Obtained by Mino, Sasaki & Tanaka, and Quinn & Wald (1997).

Known as the MiSaTaQuWa equation

MiSaTaQuWa equation still features a tail integral

Need regularization schemes for practical calculations.
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Ideas II: Regularization Method

Dirac’s split into R and S fields was acausal
Alternative Detweiler-Whiting split (2003) into S̃ and R̃ fields is
causal
Correct ‘MiSaTaQuWa’ self-force is recovered from R̃ part.
S̃ part not known exactly (global existence questionable), but it
can be computed in vicinity of worldline via series expansions.
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Ideas III: Dissipative/Conservative Parts of Self-Force

Scalar field example: Retarded and advanced fields Φret and Φadv

Ret. and adv. ‘R’ fields, ΦR
ret = Φret − ΦS , ΦR

adv = Φadv − ΦS

Define conservative and dissipative parts of field

Φcons =
1
2
(
ΦR

ret + ΦR
adv

)
=

1
2

(Φret + Φadv − 2ΦS)

Φdiss =
1
2
(
ΦR

ret − ΦR
adv

)
=

1
2

(Φret − Φadv)

Dissipative part does not need regularization!
Conservative part needs knowledge of S field.
Dissipative part ⇒ secular loss of energy and angular momentum.
Conservative part ⇒ shift in orbital parameters, periodic.
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Ideas IV: Interpretation of Gravitational Self-Force

accelerated motion on a
background spacetime

µ~ag = ~Fself = ~Fdiss + ~Fcons

m
geodesic motion in a perturbed
spacetime

µ~ag+h = 0
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Methods I: `-mode regularization

Define Fαret/S ≡ µkαµνβ∇βh̄
ret/S
µν (as fields), then write

Fself = (Fret − FS)|p

=
∞∑

`=0

(
F `ret − F `S

)∣∣∣
p

(`-mode contributions are finite)

=
∞∑

`=0

[
F `ret(p)−AL−B − C/L

]
−
∞∑

`=0

[
F `S(p)−AL−B − C/L

]

=
∞∑

`=0

[
F `ret(p)−AL−B − C/L

]
−D (where L = `+ 1/2)

Regularization Parameters A,B,C,D calculated analytically for
generic orbits in Kerr in Lorenz gauge h̄;ν

µν = 0.
Works well for spherically-symmetric spacetimes (e.g. Schw.)
which allow decomposition in tensor spherical harmonics
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Methods II: Puncture Schemes

Metric perturbation g
Schw/Kerr
µν + hµν

Trace-reversed MP: h̄µν = hµν − 1
2gµνh

Work in Lorenz gauge h̄;ν
µν = 0. Four gauge constraints.

10 wave equations: (neglecting (µ/M)2 and higher)

�h̄µν + 2Rαµβν h̄αβ = −16πTµν

Delta-function source,

Tµν(xα) = µ

∫ ∞

−∞
(−g)−1/2δ4[xα − xαp (τ)]uµuνdτ.

In 1+1D, MP is C0 on the worldline. In 2+1D, MP diverges
logarithmically. In 3+1D, diverges as 1/distance.
Idea: evolve a ‘residual field’ hres = hret − hpunc, where hpunc is
some local approximation to hS̃ .
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A (selective) review of progress since 2009

1 First comparison of gauge-invariant results with Post-Newtonian
theory (PN) and Numerical Relativity (NR):

ISCO shift due to conservative part of GSF
Perihelion advance of eccentric orbits
Benefits of using ‘symmetric mass-ratio’

2 Calibration of Effective One-Body (EOB) theory with GSF

3 First ‘self-forced’ evolutions:
1 via method of osculating geodesics
2 with time domain code (scalar-field)

4 Resonances in EMRIs on Kerr spacetime

Sam Dolan (Southampton) Self-force Calculations Lisbon 20 / 98



1. Comparisons: (I) The redshift invariant

Circular geodesic motion on Schwarzschild at radius r > 3M ,

E =
r − 2M√
r(r − 3M)

µ,
dE

dt
= −Ft/ut0

The dissipative components, Ft and Fr, corresponding to energy
and angular momentum loss, are gauge-invariant(*).
The conservative component Fr is gauge-dependent.
Detweiler identified two quantities which are gauge invariant under
transforms that respect the helical symmetry of the circular orbit.

1 Orbital frequency Ω ⇔ radius R ≡ (M/Ω2)1/3
2 Redshift z = 1/ut

Both defined w.r.t Schw. t coordinate of background spacetime.
z(R) is a gauge-invariant relation.
Independent results of Regge-Wheeler and Lorenz gauge
calculations compared by Detweiler, and Sago & Barack (2008).
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1. Comparisons: (II) The ISCO shift

Innermost stable circular orbit (ISCO) where dE/dr = 0.
For geodesic motion,

risco = 6M, Ωisco =
(

63/2M
)−1

.

The conservative part of GSF shifts the ISCO by O(µ).
∆Ωisco is invariant under gauge transformations that respect the
helical symmetry of the circular orbit.
GSF prediction:

∆Ωisco

Ωisco
= 0.4870µ/M

Barack & Sago, PRL 102, 191101 (2009), arXiv:0902.0573.
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1. Comparisons: (II) The ISCO shift

GSF prediction must be modified for comparison with PN,
because Lorenz gauge is not asymptotically-flat (htt ∼ O(r0)).
Apply simple monopolar gauge transformation to get:

∆Ωisco

Ωisco
= 1.2512µ/M

A challenge: can a resummed Post-Newtonian expansion match
this strong-field result?
Challenge taken up in M. Favata, PRD 83, 024027 (2011),
arXiv:1008.4622.
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1. Comparisons: (II) The ISCO shift

Table 1 in M. Favata, PRD 83, 024027 (2011), arXiv:1008.4622.
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1. Comparisons: (III) The periastron advance

GR ⇒ periastron advance δ = 6πM
[(1−e2)p]

(e.g. 43” per century for Mercury).

Conservative part of GSF ⇒ ∆δ ∼ O(µ)

∆δ < 0 for all eccentric orbits

∆δ is gauge-invariant (within restricted class of gauges) . . .

. . . but its parameterization ∆δ(p, e) is not.

Numerical results in Barack & Sago, PRD 83, 084023 (2011),
arXiv:1101.3331.
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1. Comparisons: (III) The periastron advance

Periastron advance was recently compared between NR, PN, EOB
and GSF in comparable mass regime 1/8 ≤ µ/M ≤ 1.

Le Tiec et al. PRL 107, 141101 (2011) [arXiv:1106.3278]

Remarkably, the GSF prediction works well even in comparable
mass regime if we replace µ/M with symmetric mass ratio:

µ/M → µM/(µ+M)2

Plots on next slide show K = Ωφ/Ωr = 1 + δ/(2π).
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1. Comparisons: (III) The periastron advance

From Le Tiec, Mroué, Barack, Buonanno, Pfeiffer, Sago and Taracchini, PRL
107, 141101 (2011), arXiv:1106.3278.
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1. Comparisons: (III) The periastron advance

From Le Tiec, Mroué, Barack, Buonanno, Pfeiffer, Sago and Taracchini, PRL
107, 141101 (2011), arXiv:1106.3278.
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2. Calibration of Effective One-Body theory

Damour and collaborators have fed GSF results into the EOB
model.
Idea: Compare precession of small-eccentricity orbits at first-order
in µ

Ω2
r

Ω2
φ

= 1− 6x+
( µ
M

)
ρ(x) +O

(
(µ/M)2

)

where
x ≡ [(M + µ)Ωφ]2/3 .

PN theory gives the (weak-field) expansion

ρPN (x) = ρ2x
2 +ρ3x

3 +(ρc4 +ρlog
4 lnx)x4 +(ρc5 +ρlog

5 lnx)x5 +O(x6)

ρ2, ρ3 are given by 3PN.
logarithmic contributions at 4PN and 5PN (ρlog

4 and ρlog
5 ) have

been derived by Damour
ρc4 and ρc5 are (presently) unknown in PN.
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2. Calibration of Effective One-Body theory

Using accurate GSF results, {ρ2, ρ3, ρ
log
4 , ρlog

5 } may be tested, and
the unknown parameters ρc4 and ρc5 may be constrained:

ρc4 = 69+7
−4, ρc5 = −4800+400

−1200, ρlog
6 < 0.

Determination of ρ(x) in the range 0 ≤ x ≤ 1/6 gives first info on
strong-field behaviour of a combination of EOB functions a(u) and
d(u) [where u = G(M + µ)/(c2rEOB)].
Advantage of GSF calibration: Both GSF and EOB split naturally
into conservative and dissipative effects.
GSF data for ρ(x) may be fitted with simple 2-point Pade
approximation that also makes use of PN information.
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2. Calibration of EOB model

From Barack, Damour and Sago, Phys. Rev. D 82, 084036 (2010) [arXiv:1008.0935].

Sam Dolan (Southampton) Self-force Calculations Lisbon 31 / 98



3. Self-forced evolutions

Want to evolve self-forced orbits over 105 cycles!
Pound & Poisson [PRD77, 044013 (2008)] described a method of
osculating geodesics for self-forced evolutions.

Requires a fit to GSF data over a range of (p, e) with analytic
model.

First evolutions recently performed by Warburton, Akcay, Barack,
Gair & Sago [arXiv:1111.6908].

Animations follow, showing two simulations: (i) with full GSF; (ii)
with only dissipative part of GSF.
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3. Self-forced evolutions

Rather than computing GSF w.r.t. geodesics of background, the
aim is to evolve self-consistently in the time domain.
Diener, Vega, Wardell and Detweiler [arXiv:1112.4821] have looked
at scalar-field case:
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4. Resonances (I)

Two timescales: (i) orbital period ∼M , (ii) radiation reaction
µ−1.

Hinderer & Flanagan (2010) describe two-timescale expansion for
EMRIs, using action-angle variables.

Action : ‘constants’ of motion : Jν =
(
E/µ,Lz/µ,Q/µ

2
)

Angle : ‘phase’ variables qα = (qt, qr, qθ, qφ).

qr → qr + 2π as orbit goes r = rmin → rmax → rmin with period
τr = 2π/ωr.

Frequencies ωα(J) = (ωr, ωθ, ωφ)

Generic geodesic orbits on Kerr are ergodic (space-filling).

Isometries of Kerr ⇒ (qt, qφ) ‘irrelevant’, (qr, qθ) ‘relevant’ params.
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4. Resonances (II)

1. Geodesic approximation (η = 0):

dqα
dτ

= ωα(J)

dJν
dτ

= 0

Solution :

qα(τ, η = 0) = ωα τ (1)
Jν(τ, η = 0) = const. (2)

Timescale : unchanging
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4. Resonances (III)

2. Adiabatic approximation:

dqα
dτ

= ωα(J)

dJν
dτ

= η
〈
G(1)
ν (qr, qθ, J)

〉
orbital average

Solution :

qα(τ, η) = η−1q̂(ητ)
Jν(τ, η) = Ĵ(ητ)

Timescale : τrad.reac. ∼ η−1
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4. Resonances (IV)

3. Post-adiabatic approximation:

dqα
dτ

= ωα(J) + ηg(1)
α (qr, qθ, J) +O(η2)

dJν
dτ

= ηG(1)
ν (qr, qθ, J) + η2G(2)

ν (qr, qθ, J) +O(η3).

Two timescales : ∼ η−1 (secular) and ∼ 1 (oscillatory).
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4. Resonances (V)

Is adiabatic approximation justified? i.e. is it always OK to neglect
fast-oscillating parts?
Consider Fourier decomposition

G(1)
ν (qr, qθ, J) =

∑

kr,kθ

G
(1)
νkr,kθ

(J)ei(krqr+kθqθ)

and qr = ωrτ + ω̇rτ
2 + . . ., qθ = ωθτ + ω̇θτ

2 + . . .

krqr + kθqθ = (krωr + kθωθ) τ + (krω̇r + kθω̇θ) τ2 + . . .

Cannot neglect higher Fourier components if resonance condition

krωr + kθωθ = 0

is satisfied! i.e. when ωr/ωθ passes through low-order integer ratio.
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4. Resonances (VI)

Duration of resonance set by (krω̇r + kθω̇θ) τ2 ∼ 1, i.e.

τres ∼ 1/
√
pη

where p ≡ |kr|+ |kθ|, η = µ/M .
Net change in ‘constants’ of motion is

∆J ∼
√
η/p

Net change in phase is
∆q ∼ 1/

√
ηp

Need to know precise first-order SF and (possibly) dissipative part
of 2nd-order SF to model resonance accurately.
Without complete knowledge, a resonance effectively resets the
phase and ‘kicks’ the orbital parameters.
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4. Resonances (VII)

Credit: Hinderer & Flanagan, arXiv:1009.4923.
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GSF on Kerr: The frontier

Schw. ⇒ separability ⇒ l-mode regularization ⇒ easy!

decompose h̄ab in tensor spherical harmonics Y lm(i)
ab

use Lorenz gauge ∇bh̄ab = 0 with gauge constraint damping

solve 1+1D in time domain, or ODEs in freq. domain

apply l-mode regularization:

F self
µ =

∞∑

`=0

[
F `,retµ −A(l + 1/2)−B − C/(l + 1/2)

]
−D
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GSF on Kerr: The frontier

Kerr ⇒ hard choices . . . lack of separability . . .
Teukolksy variables Ψ0,Ψ4 . . . spin-weighted spheroidal harmonics
. . . metric reconstruction in radiation gauge (Chrzanowski) →
Lorenz gauge? l = 0, 1 modes?

Hertz potential approach under development by Friedman et al.

tensor spheroidal harmonics . . . [don’t exist?]

Full 3+1D approach . . . expensive!

m-mode + 2+1D evolution . . . practical compromise.

Proof-of-principle for m-mode recently established with scalar-field
toy model for circular orbits on Kerr

ΦR =
∞∑

m=−∞
Φm
Re

imϕ, Fmr = q∂rΦm
R, Fr =

∞∑

m=−∞
Fmr
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Puncture scheme : Scalar field implementation

Local approximation ΦP for Detweiler-Whiting S field ΦS

Covariant expansion → power series approximation in
coordinate differences δxa = xa − x̄a, where

x is field point, x̄ is worldline point

Classification: nth order expansion iff

Φ[n]
P − ΦS ∼ O(|δx|δxn−2)

4th-order expansions are available [arXiv:1107.0012,
arXiv:1112.6355].

From local expansion Φ[n]
P to global puncture field Φ[n]

P :
Let x̄ become a function of x

e.g. set same BL time coordinate, t̄ = t

Periodic continuation: e.g. δϕ2 → 2(1− cos δϕ) = δϕ2 +O(δϕ4)
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Residual field + modal decomposition

Introduce residual field: Φ[n]
R = Φ− Φ[n]

P

Residual field obeys wave equation,

�ΦR = Seff

with effective source Seff =
∫
γ δ(x− x̄(τ))dτ −�Φn

R.

Regularity: Seff ∼ O
(
|δx|δxn−4

)

Decomposition in m modes:

ΦR =
∞∑

m=−∞
Φm
Re

imϕ, {Φm
P , S

m
eff} =

1
2π

∫ π

−π
{ΦP , Seff} e−imϕdϕ

2+1D wave equations:
�mΦm

R = Smeff
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Mode sums and convergence

Field is real ⇒ Φ−m = Φm∗

SF from mode sums, e.g.

Fr = q

∞∑

m=0

∂rΦ̃m
R

where

Φ̃m
R =

{
Φm
R, m = 0

2 Re
(
Φm
R e

imϕ̄(t)
)
, m 6= 0

Power law convergence Fmr ∼ m−ζ in large-m regime

Convergence rate ζ depends on order n of puncture.

ζ = n for n even, and ζ = n− 1 for n odd.
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Puncture order and m-mode convergence

For circular orbits, Fr is conservative and Fϕ is dissipative.

punc. order ΦR C Seff Φm
R Fmr Fmϕ

1 δx/ |δx| C−1 1/δx2 m−2 — —

2 |δx| C0 1/|δx| m−2 m−2 e−λm

3 |δx| δx C1 δx/|δx| m−4 m−2 e−λm

4 |δx| δx2 C2 |δx| m−4 m−4 e−λm

Sam Dolan (Southampton) Self-force Calculations Lisbon 46 / 98



World-tube construction

Worldtube T of fixed dimensions δr, δθ
Outside: �mΦm = 0
Inside: �mΦm

R = Smeff

Across boundary δT : Φm
R = Φm − Φm

P
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Finite difference method in 2+1D

r*

θt
t=0
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Spatial profile of modes: r∗
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Spatial profile of modes: θ
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Spatial profiles: r∗ and θ (m = 0)
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Spatial profiles: r∗ and θ (m = 1)
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Spatial profiles: r∗ and θ (m = 5)
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Spatial profiles: r∗ and θ (m = 10)
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Time evolution of m-modes on worldline
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Low-m modes and power law relaxation

Low-m modes take longest to relax

Fit power-law decay model

e.g. for m = 0, Φ̃m
R(t) = Φ̃m

R(∞) + c2t
−η + . . .
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Richardson extrapolation (I)
Extrapolation to infinite resolution

Results depends on grid resolution x, e.g. :

4t = xM, 4r∗ = xM, 4θ = πx/6

Second-order-accurate FD method ⇒ error O(x2)

Ψm(x) = Ψm(x = 0) + c2x
2 + c3x

3 + . . .

Fit results of runs at various resolutions to this model, and
extrapolate to x = 0
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Richardson extrapolation (II)
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Richardson extrapolation (III)
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Modal convergence: Fm
φ

Exponential convergence of dissipative component
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Modal convergence: Fm
r

Power-law convergence of conservative component

Puncture orders n = 2, 3 and 4
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Modal convergence: Fm
r

4th-order puncture ... m−4 convergence
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Modal convergence: Fm
r

rescaled variable m4Fm
r
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Results: scalar-field SF on Kerr
Fr for circular orbits in equatorial plane

Radial component of SF, (M2/q2)F self
r

r0 = 6M r0 = 10M r0 = risco

a = −0.9M
– 4.941(1) ×10−5 9.6074(7) ×10−5

– 4.39995 9.607001

a = −0.7M
– 4.102(1) ×10−5 1.1077(2) ×10−4

– 4.100712 1.107625

a = −0.5M
– 3.290(1) ×10−5 1.2751(2) ×10−4

– 3.28942 1.275170

a = 0M
1.6771(2) ×10−4 1.379(1) ×10−5 1.6771(2) ×10−4

1.677283 1.378448 1.677283

a = +0.5M
−2.423(4) ×10−5 −4.028(9) ×10−6 −6.925(5) ×10−5

−2.421685 −4.03517 −6.922147

a = +0.7M
−9.530(3) ×10−5 −1.0913(9) ×10−5 −1.0886(4) ×10−3

−9.528095 −1.091819 −1.088457

a = +0.9M
−1.6458(5) ×10−4 −1.767(1) ×10−5 −1.1344(9) ×10−2

−1.645525 −1.768232 −1.133673
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Results: scalar-field SF on Kerr
Fφ for circular orbits in equatorial plane

Angular component of SF, −(M/q2)F self
φ

r0 = 6M r0 = 10M r0 = risco

a = −0.9M
– 1.41470(1) ×10−3 2.18835(1) ×10−3

– 1.414708 2.188351

a = −0.7M
– 1.35624(1) ×10−3 2.57803(1) ×10−3

– 1.356244 2.578045

a = −0.5M
– 1.30226(1) ×10−3 3.08354(1) ×10−3

– 1.302267 3.083542

a = 0M
5.304230(3) ×10−3 1.18592(1) ×10−3 5.30423(1) ×10−3

5.3042317 1.185926 5.304232

a = +0.5M
4.230745(3) ×10−3 1.09349(1) ×10−3 1.18357(4) ×10−2

4.230749 1.093493 1.183567

a = +0.7M
3.928695(3) ×10−3 1.06216(1) ×10−3 1.94873(1) ×10−2

3.928698 1.062163 1.948731

a = +0.9M
3.676723(8) ×10−3 1.03344(1) ×10−3 4.5079(2) ×10−2

3.676726 1.0334444 4.508170
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GSF on Kerr

So much for the scalar field ... what about the interesting case?

Einstein equations :

Gab ≡ Rab −
1
2
gabR = 8πTab

Vacuum background + stress-energy Tab ∝ ‘small’ parameter
µ = m/M

Metric split : background + perturbation :

gab = ĝab + µhab

Trace-reversed perturbation h̄ab :

h̄ab = hab −
1
2
gabh
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Gravitational SF on Kerr

Linearized equations:

∆Lh̄ab ≡ ∇c∇ch̄ab + 2Rcadb h̄cd + gabZc;c −Za;b −Zb;a = −16πTab

where
Zb ≡ ∇ah̄ab

Mixed hyperbolic-elliptic type equations.

Impose Lorenz gauge conditions Za = 0 ⇒ �Za = 0.

How to enforce gauge conditions? Gauge-constraint damping
[Gundlach et al. ’05]

∇c∇ch̄ab + 2Rcadb h̄cd + naZb + nbZa = −16πTab.
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Gravitational SF on Kerr

m-mode decomposition:

h̄ab = αab(r, θ)uab(r, θ, t)eimφ, (no sum)

10 wave equations:

�scuab +Mab(ucd,t, ucd,r∗ , ucd,θ, ucd) = Sab

Sam Dolan (Southampton) Self-force Calculations Lisbon 68 / 98



2+1D Wave Equations (Schw.)

f�scuab +Mab(u̇cd,t, ucd,r∗, ucd,θ, ucd) = 0

M00 =
2
`
2r2(u̇01 − u′00) + u00 − u11

´
r4

+
4f (u00 − u11)

r3
+

2f2 (u22 + u33)

r3

M01 = −2f2 (cos θu02 + imu03)

r2 sin θ
+

2(u̇00 + u̇11 − 2u′01)

r2
− 2f2(u01 + ∂θu02)

r2

M02 = −f(u02 + 2im cos θu03)

r2 sin2 θ
+

2(u̇12 − u′02)

r2
+
f [(4 + r)u02 + 2r∂θu01]

r3
− f2u02

r2

M03 = −f(u03 − 2im cos θu02)

r2 sin2 θ
+

2fimu01

r2 sin θ
+

2(u̇13 − u′03)

r2
+
f(4 + r)u03

r3
− f2u03

r2

M11 = −4f2(cos θu12 + imu13)

r2 sin θ
+

2[2r2(u̇01 − u′11) + u11 − u00]

r4
− 4f(u00 − u11)

r3

−2f2(2ru11 + u22 + u33 + 2r∂θu12)

r3
+

2f3(u22 + u33)

r2

M12 = −f(u12 + 2im cos θu13)

r2 sin2 θ
− 2f2[cos θ(u22 − u33) + imu23]

r2 sin θ
+

2(u̇02 − u′12)

r2

+
f [(4 + r)u12 + 2r∂θu11]

r3
− f2(5u12 + 2∂θu22)

r2

Sam Dolan (Southampton) Self-force Calculations Lisbon 69 / 98



2+1D Wave Equations (Schw.)

f�scuab +Mab(u̇cd,t, ucd,r∗, ucd,θ, ucd) = 0

M13 = −f(u13 − 2im cos θu12)

r2 sin2 θ
− 2f [2f cos θu23 + im(fu33 − u11)]

r2 sin θ
+

2(u̇03 − u′13)

r2

+
f(4 + r)u13

r3
− f2(5u13 + 2∂θu23)

r2

M22 = −2f [u22 − u33 + 2im cos θu23]

r2 sin2 θ
+

2(u00 − u11)

r3
+

2f(u11 + u22 + 2∂θu12)

r2

−2f2(u22 + u33)

r2

M23 = −2f [2u23 − im cos θ(u22 − u33)]

r2 sin2 θ
− 2f(cos θu13 − imu12)

r2 sin θ
+

2f(u23 + ∂θu13)

r2

M33 =
2f(u22 − u33 + 2im cos θu23)

r2 sin2 θ
+

4f(cos θu12 + imu13)

r2 sin θ
+

2(u00 − u11)

r3

+
2f(u11 + u33)

r2
− 2f2(u22 + u33)

r2
.
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Gauge constraint damping

Imperfect, gauge-violating initial data

⇒ Za ≡ ∇bh̄ab 6= 0.

Gauge-violation itself obeys a wave equation:

�Za = 0.

How to drive system towards Lorenz gauge solution Za = 0?

Gauge Constraint Damping: add extra term to wave equations
featuring gauge violation vector Za, i.e.

�h̄ab + 2Rcadbh̄cd + (naZb + nbZa) = 0.

so that Za obeys a damped wave equation
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2nd-order puncture scheme

Barack, Golbourn & Sago (2007) give a 2nd-order puncture
formulation:

h̄Pab(x) =
µ

ε
[2]
P

χab, χab =
[
uaub + (Γcadub + Γcbdua)ucδx

d
]
x=x̄

For circular orbits in equatorial plane, this reduces to

χ00 = C00 +D00δr

χ01 = D01 sin δφ
χ03 = C03 +D03δr

χ13 = D13 sin δφ
χ33 = C33 +D33δr
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2nd-order puncture scheme

Effective source: Seff
ab = �h̄Pab + 2Rcadbh̄Pcd

m-mode decomposition: h̄P (m)
ab and S

eff(m)
ab

Puncture and source found in terms of ‘symmetric’ elliptic
integrals Im1 , . . . , I

m
5 . . .

. . . and antisymmetric integrals Jm1 , . . . , J
m
5 . . .

Z π

−π
ε−3
P sin δφ e−imδφd(δφ) =

−i
B3/2ρ

ˆ
qm1KK(i/ρ) + ρ2qm1EE(i/ρ)

˜
Z π

−π
ε−3
P sin δφ cos δφ e−imδφd(δφ) =

−iγ
B3/2

[qm2KK(γ) + qm2EE(γ)]Z π

−π
ε−5
P sin δφ cos2(δφ/2) e−imδφd(δφ) =

−iγ
B5/2

ˆ
qm3KK(γ) + ρ−2qm3EE(γ)

˜
Z π

−π
ε−5
P sin δφ sin2(δφ) e−imδφd(δφ) =

−i
B5/2ρ

ˆ
qm4KK(i/ρ) + ρ2qm4EE(i/ρ)

˜
Z π

−π
ε−5
P sin δφ sin2(δφ/2) e−imδφd(δφ) =

−iγ2

B5/2ρ

ˆ
qm5KK(i/ρ) + ρ2qm5EE(i/ρ)

˜
Wardell and co. developing a 4th-order scheme
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Metric Perturbations : Time evolution
Regularized field at particle in circular orbit: r0 = 7M , m = 2
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Gauge Violation : Time evolution
r0 = 7M , m = 2
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Metric Perturbations : Angular Profile
r0 = 7M , m = 2
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Metric Perturbations : Angular Profile
r0 = 7M , m = 2
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l-mode and m-modes

Project out: m-modes umab(t, r, θ) onto lm modes h(i)
lm(t, r) of

Barack/Lousto/Sago.

Use tensor spherical harmonics i = 1 . . . 10,

h
(1)
lm(r, t) = 2π

Z π

0
sinx (u00 + u11)Y ∗lm(x)dx (3)

h
(2)
lm(r, t) = 2π

Z π

0
sinx 2u01Y

∗
lm(x)dx (4)

h
(3)
lm(r, t) = 2π

Z π

0
sinx (u00 − u11)Y ∗lm(x)dx (5)

h
(4)
lm(r, t) = 4π

Z π

0
[sinxu02 ∂x − imu03]Y ∗lmdx (6)

h
(5)
lm(r, t) = 4π

Z π

0
[sinxu12 ∂x − imu13]Y ∗lmdx (7)

h
(6)
lm(r, t) = 2π

Z π

0
sinx (u22 + u33)Y ∗lmdx (8)

h
(7)
lm(r, t) = 2π

Z π

0
[sinx(u22 − u33)D2 + 2u23D1]Y ∗lmdx (9)
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Comparison with l-modes
Projection from m modes onto lm modes of Barack/Lousto/Sago

l = 2, m = 2

i = 1 3.1246 −0.2630i
3.1246 −0.2632i

i = 2 −0.2316 0.9755i
−0.2312 0.9758i

i = 3 5.3159 0.6164i
5.3162 0.6162i

i = 4 −0.9269 9.4275i
−0.9249 9.4292i

i = 5 −2.3297 −2.5279i
−2.3310 −2.5279i

i = 6 1.5471 0.6009i
1.5468 0.6006i

i = 7 −5.3326 −5.2205i
−5.3319 −5.2190i
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Problem: Time Evolution of m = 0 mode
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Radial Profile : m = 0 mode
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Radial Profile : m = 0 mode
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Radial Profile : m = 0 mode
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The low multipoles stability problem

The growing solutions arise even for vacuum perturbations.

The growing solutions are (locally) Lorenz-gauge

They are homogeneous and pure-gauge: hab = ξa;b + ξb;a

They are ‘scalar’ gauge modes: ξa = Φ;a.

The growing solutions satisfy ingoing conditions at horizon:

u ∼ t+ 2 ln(1− 2/r) ⇒
(
∂

∂t
− ∂

∂r∗

)
u = 0

The growing solutions are traceless h = −h̄aa = 0.

The problem is entirely in l = m = 0 and l = m = 1 modes.

Q. Why has no-one evolved Schw. l = 0 and l = 1 modes in
time-domain?

A. Negative potentials (r < 3M), unstable evolutions.
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Lorenz-Gauge Monopole Modes

Pure-gauge modes generated by gauge vectors ξa

hab = ξ(a;b) ⇒ h̄ab = ξ(a;b) −
1
2
gabξ

c
;c

Lorenz-gauge h̄;b
ab = 0 ⇒ ξa;b

b = 0

Two scalar monopole gauge modes ξa = Φ;a ⇒ (�Φ);a = 0 ⇒
�Φ = {0, const.}
Trace : h = ξa;a = �Φ = {0, const}
⇒ Trace-free, static scalar gauge mode Φ0 = 1

2 ln f

Pseudo-static mode Φ = t× Φ0 = t
2 ln f , �Φ = 0,

u00, u11, u22 ∝ t, u01 6= 0.
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Pseudo-static modes

Pseudo-static (i.e. linearly-growing) locally Lorenz-gauge modes in
monopole

How do they arise in time domain?

To see, use conservation laws (due to symmetries of Ricci-flat
background) to reduce degrees of freedom.

Monopole: Four coupled 2nd order equations + two gauge
constraints + one conservation equation.

After reducing degrees of freedom, find wave equation with
negative potential.
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Conserved quantities in non-radiative multipoles (I)

Symmetries: Background spacetime has Killing vectors Xa :

∇aXb +∇bXa = 0

Stress-energy is conserved, ∇aT ab = 0, so we can construct a
conserved vector:

ja ≡ T abXb ⇒ ∇a ja = 0.

The vector ja = (−16π)−1WabX
b can be written

ja = ∇bF ab, where Fab = −Fba

i.e. the divergence of an antisymmetric tensor F ab where

(−16π)Fab = h̄ac;bX
c − h̄bc;aXc − h̄acXc

;b + h̄bcX
c
;a

Apply Stokes’ theorem ⇒ Conserved integrals on two-surfaces
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Conserved quantities in non-radiative multipoles (II)

Gauss’s theorem: ∫

Σ1

jadΣa =
∫

Σ2

jadΣa

Stokes’ theorem (ja = F ab;b):
∫

Σ
F ab;bdΣa =

1
2

∫

∂Σ
F abdSab

Σ

∂Σ
∂Σ1

2

γ
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Conservation Law (III)

Integrate on constant-t hypersurfaces, on concentric spheres:

X
(t)
a ⇒ Energy E , X

(φ)
a ⇒ Ang. Mom. Lz in perturbation

Ang. mom. in l = 1 odd-parity sector, energy is in monopole
(l = 0),

4π
[
r2F

(t)
01

]r2
r1

=

{
E ≡ −ut, r1 < r0 < r2,

0, otherwise.

Locally conserved quantity in monopole (l = m = 0) equations:

r2
(
h̄tt,r − h̄tr,t

)
− 2f−1h̄tt + 2fh̄rr =

{
−4E , r > r0,

0, r < r0.
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Monopole equations

Monopole has four equations (u00, u01, u11, u22 = u33) + two gauge
constraints.

Trace equation evolve stably

Use conserved quantity C =

{
−4E r < r0

0 r > r0

Hierarchical system of equations for {H,X, Y }
D2H = 0

D2X =
2f
r4
H − 3fC

r3[
D2 − 2f

r2

(
1− 4M

r

)]
Y = −4f

r2
H +

2f
r
C

where D2 = −∂2
t + ∂2

r∗ − 2fM/r3

H = rh̄aa, X = (2rf)−1 [u11 − (2r − 3)u00], Y = rf−1(u00 − u11).
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Monopole equations

H and X equations evolve stably. Y equation does not.

Y equation resembles a Regge-Wheeler equation
[
− ∂2

∂t2
+

∂2

∂r2∗
− V12(r)

]
Y = . . .

where

Vls(r) = f

(
l(l + 1)
r2

− 2M(1− s2)
r3

)

i.e. here l = 1, s = 2 .

Potential turns negative within r < 3M ⇒ growing modes.

In principle, Y can be recovered from H,X by integrating
conservation law on spatial slices:

∂

∂r∗
(rY ) = r[C − 2X − fH].
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Challenges for time-domain Lorenz gauge formulation

How do we evolve l = 0, l = 1 modes in time domain in 1+1D?

e.g. how do we eliminate trace-free, massless, locally-Lorenz gauge
modes? (in monopole and dipole)

How do we enforce the physical boundary condition at the horizon?

Ideas . . . :
1 Use of generalized Lorenz gauge to promote stability,

h̄;ν
µν = Hµ(h̄αβ; r).

2 Horizon-penetrating coordinates? (e.g. ingoing Eddington-Fink.).
Hyperboloidal slicing?

3 Restricted set of variables, with reconstruction of metric by
integrating first-order conservation equations?
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Generalized Lorenz gauge

I have tried a generalized Lorenz gauge (GLG) of the form

h̄;b
ab = Ha(htr)

For circular orbits, we want the monopole part of htr to be zero.

I can achieve stable evolutions if I make Ha proportional to an
ingoing null vector.

With analytically-known l = 0,m = 0 monopole as initial data, the
2+1D scheme evolves stably with htr → 0 as grid spacing → 0.

I have not yet found a GLG which stabilizes the m = 1, l = 1
even-parity dipole ...

... but since the undesirable mode grows linearly (whereas physical
part ∼ exp(imΩt)), I can eliminate it:

h→ − 1
Ω2

∂2

∂t2
h

Sam Dolan (Southampton) Self-force Calculations Lisbon 93 / 98



Recent progress

These ‘tricks’ now make it possible to compute Lorenz-gauge GSF
for circular orbits, using 2+1D approach.

With a second-order puncture, and max. resolution ∆r∗ = M/16, I
can compute Fr to accuracy greater than 0.05%, for r0 = 6M on
Schw.

I have written the first Lorenz-gauge 2+1D Kerr code.

To validate, may compare Ft against the energy fluxes computed
via the Teukolsky formalism
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Recent progress: Dissipative GSF in Kerr
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m = 2 mode (radiative)
Showing results of various grid resolutions x ≡M/n.
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Recent progress: Dissipative GSF in Kerr
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extrapolated value

2nd-order puncture ⇒ S ∼ ln(|r − r0|) ⇒ x2 lnx convergence.
0.4% here error still unexplained ...
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Summary of progress: m-mode 2 + 1D method

Scalar field, first-order puncture: Barack & Golbourn
[arXiv:0705.3620].

Second-order GSF formulation: Barack, Golbourn & Sago
[arXiv:0709.4588].

Scalar-field, fourth-order punc, Schw.: Dolan & Barack
[arXiv:1010.5255]

Scalar-field, Kerr, circ orbits: Dolan, Wardell & Barack
[arXiv:1107.0012]

Scalar-field, Kerr, eccentric orbits: Thornburg (in progress)

GSF, Schw, circ. orbits, 2nd order: Dolan & Barack (in progress)

GSF, Kerr, circ. orbits, 4th order: coming soon (I hope!).
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Summary

GSF programme for black hole inspirals recently came-of-age (in 2009)
with comparison of physically-meaningful numerical results on
Schwarzschild with other methodologies.

First comparisons of GSF with PN, EOB and NR have been successful.

First ‘self-forced’ orbits and waveforms produced recently (Gair et al.)

Very interesting resonance phenomenon (Hinderer & Flanagan) expected
for EMRIs on Kerr. Details require Kerr GSF.

First GSF calculations on Kerr underway (Dolan 2011; Friedman 2011).

Second-order formalism is under discussion; numerical work someway off.

Lots of interesting calculations still to do!
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