
Symmetries & Spin-statistics
relation in Quantum Space-time

Kumar S. Gupta

Theory Division

Saha Institute of Nuclear Physics,
Kolkata, India

K.S.Gupta, CENTRA,Lisboa,2012 – p. 1



Introduction

Two basic questions about nature are:

Can space-time coordinates be measured with
arbitrary precision ?
Is there a fundamental and elementary length scale
in nature ?

These issues are related to the quantum structure of
space-time relevant at the Planck scale.

Noncommutative Geometry is one of the candidates for
describing physics at that regime.
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Space-time UR

Heisenberg’s Principle
+ =⇒ Space-time uncertainty relations

Einstein’s Theory

Measuring a space-time coordinate with an accuracy δ
causes and uncertainty in the momentum ∼ 1

δ .

Neglecting rest mass, an energy of the order 1

δ is
transmitted to the system and concentrated for some
time in the localization region. The associated
energy-momentum tensor generates a gravitational
field.

The smaller the uncertainties in the measurement of
coordinates, the stronger will be the gravitational field
generated by the measurement.
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Space-time UR

To probe physics at Planck Scale lp, the Compton
wavelength 1

M of the probe must be less than lp, hence
M > 1

lp
, i.e. Planck mass.

When this field becomes so strong as to prevent light or
other signals from leaving the region in question, an
operational meaning can no longer be attached to the
localization.

Similarly, observations of very short time scales also
require very high energies. Such observations can also
form black holes and limit spatial resolutions leading to
a relation of the form

∆t∆x ≥ L2, L = fundamental length

.
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Space-time UR

Based on these arguments, Doplicher, Fredenhagen and
Roberts (1994) arrived at uncertainty relations between
the coordinates, which they showed could be deduced
from a commutation relation of the type

[qµ, qν ] = iQµν

where qµ are self-adjoint coordinate operators, µ, ν run
over space-time coordinates and Qµν is an antisymmetric
tensor, with the simplest possibility that it commutes with
the coordinate operators.
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Noncommutative geometry

An example of noncommutative geometry is provided by
the d-dimensional Groenewold-Moyal spacetime or GM
plane, which is an algebra Aθ(R

N ) generated by elements
x̂µ (µ ∈ [0, 1, 2, · · · , N − 1]) with the commutation relation

[x̂µ , x̂ν ] = iθµν1 ,

θµν being real, constant and antisymmetric in its indices.
This algebra can be represented by functions of commuting
variables with a twisted product

µθ(f ⊗ g) = f ∗ g = fei/2
←−

∂ µθ
µν−→∂ νg = µ0(Fθf ⊗ g).

The ∗ product defines the associative but noncommutative
algebra Aθ(R

N ). The twist element is denoted by Fθ.
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NCG

In the commutative case, we know that symmetry and
spin-statistics theorem are the two basic building blocks
for any quantum theory.

How do we implement symmetries and how should we
define particle statistics in a noncommutative framework?

For that, we first discuss how a symmetry group in the
commutative framework acts on a multiparticle Hilbert
space and then generalize that to the noncommutative
algebra.
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Symmetry on algebra

Let a symmetry group G with elements α act on single
particle Hilbert space H by a unitary representation
α→ D(α). Then, in the usual case, G acts on H ⊗H by
the representation

α→ [D ⊗D](α⊗ α) .

The homomorphism

∆ : G → G ⊗ G α → ∆(α) = α⊗ α

is called the coproduct on G.

The action of G on multiparticle states involves more than
just group multiplication as it requires the coproduct.
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Symmetry on algebra

Let A be an algebra. A comes with a rule for multiplying
its elements. For f, g ∈ A there exists the multiplication
map µ such that

µ : A⊗A → A ,

f ⊗ g → µ(f ⊗ g) .

Now let G be the group of symmetries acting on A by a
given representation D : α→ D(α) for α ∈ G. We can
denote this action by

f −→ D(α)f .
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Symmetry on algebra

The action of G on A⊗A is formally implemented by the
coproduct ∆

∆ : G −→ G ⊗ G

The action is compatible with µ only if a certain compatibility
condition between ∆(α) and µ is satisfied. This action is

f ⊗ g −→ (D ⊗D)∆(α)f ⊗ g ,

and the compatibility condition requires that

µ ((D ⊗D)∆(α)f ⊗ g) = D(α)µ(f ⊗ g) .
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Symmetry on algebra

The compatibility condition can be expressed in terms of the
following commutative diagram :

f ⊗ g
∆

- (D ⊗D)∆(α)f ⊗ g

µ(f ⊗ g)

µ

?

- D(α)µ(f ⊗ g)

µ

?

If a ∆ satisfying the above compatibility condition exists, then
G is an automorphism of A. If such a ∆ cannot be found, then
G does not act on A.
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Commutative Diffeos

Diffeos are generated by vector fields defined by

ξ = ξµ
∂

∂xµ

Denote the space of vector fields by V . Commutator of
two vector fields ξ, η ∈ V is another vector field in V given
by by

[ξ, η] = (ηµ(∂µξ
ρ)− ξµ(∂µη

ρ))
∂

∂xρ
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Leibnitz Rule

The Leibniz rule for the diffeos is given by

(ξ(f.g)) = (ξf).g + f.(ξg)

where f, g ∈ A0(R
N ) and are multiplied by the usual

commutative pointwise multiplication rule.

Leibniz rule is equivalent to the coproduct for the diffeos

∆0 : V −→ V ⊗ V, ∆0(ξ) = ξ ⊗ 1+ 1⊗ ξ

This coproduct or the Leibnitz rule is compatible with the
multiplication map on the algebra of vector fields

[∆0(ξ),∆0(η)] = ∆0([ξ, η])
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NC Diffeos

In the noncommutative case, we have the algebra Aθ(R
N )

with the multiplication map µθ. Various works, based mainly
on ideas of Drinfeld have shown that

The coproduct ∆0 is not compatible with the multiplication
map µθ.

One can define a new twisted coproduct

∆θ = F−1
θ ∆0Fθ

which is compatible with µθ.

This implies that the Leibniz rule is modified when θ 6= 0.
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Commutative Statistics

In the commutative case, the physical wavefunctions
describing two identical particles are either symmetric or
antisymmetric under the particle exchange,
corresponding to bosons and fermions, and given by

f ⊗S,A g =
1

2
(f ⊗ g ± g ⊗ f)

If G is a symmetry of the theory, then the particle statistics
must not change under its action.
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Commutative Statistics

The commutative flip operator τ0 given by

τ0(f ⊗ g) = g ⊗ f .

The physical Hilbert space is constructed from the
elements

(

1± τ0
2

)

(f ⊗ g) .

The coproduct ∆0 usually commutes with the action of τ0,

τ0∆0 = ∆0τ0 ,

and the statistics is superselected.
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Twisted Statistics

In the noncommutative case, in general we have that

τ0∆θ 6= ∆θτ0 .

Hence the usual flip operator τ0 is not compatible with
the action of the standard symmetries. So τ0 cannot be
used to construct the physical Hilbert space.

We can define a twisted flip operator τθ by

τθ = F−1
θ τ0Fθ ,

which commutes with the twisted coproduct ∆θ,

τθ∆θ = ∆θτθ .
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Twisted Statistics

The two-particle physical Hilbert space is now
constructed out of the states

f ⊗S g =

(

1 + τθ
2

)

(f ⊗ g) ,

f ⊗A g =

(

1− τθ
2

)

(f ⊗ g) ,

This encodes a twisted spin-statistics relation which has
profound consequences for observables and quantum
field theories.
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Twisted Statistics

Since the Pauli exclusion principle is now modified, some
of the processes that are Pauli forbidden in the
commutattive case may now become possible. Using this
idea, and using the experimental bounds on the
branching ratios of such forbidden transitions, there have
been attempts to put bounds on the noncommutativity
parameter.

In quantum field theory, the commutation relation
between the creation and annihilation operators are now
modified, which affects almost every calculation in QFT.

We demonstrate some of these for a NC black hole.
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BTZ

The metric for the BTZ black hole in terms of Schwarzschild-like coordinates (r, t, φ) is
given by

ds2 =

(

M −
r2

ℓ2
−

J2

4r2

)

dt2 +

(

−M +
r2

ℓ2
+

J2

4r2

)−1

dr2 + r2
(

dφ−
J

2r2
dt

)2

,

0 ≤ r < ∞ , −∞ < t < ∞ , 0 ≤ φ < 2π ,

where M and J are the mass and spin, respectively, and Λ = −1/ℓ2 is the
cosmological constant.

For 0 < |J | < Mℓ, there are two horizons, the outer and inner horizons, corresponding
respectively to r = r+ and r = r−, where

r2± =
Mℓ2

2

{

1±

[

1−

(

J

Mℓ

)2] 1
2
}

The metric is diagonal in the coordinates (χ+, χ−, r), where

χ± =
r±

ℓ
t− r∓φ ,
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BTZ

The manifold of the BTZ black hole solution is the
quotient space of the universal covering space of AdS3 by
some elements of the group of isometries of AdS3.

Let AdS3 be spanned by coordinates (t1, t2, x1, x2)

satisfying

−t21 − t22 + x21 + x22 = −ℓ2

Alternatively, one can introduce 2× 2 real matrices

g =
1

ℓ





t1 + x1 t2 + x2

−t2 + x2 t1 − x1



 detg = 1 ,

belonging to the defining representation of SL(2, R).
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BTZ

The isometries correspond to the left and right actions on
g,

g → hLghR , hL, hR ∈ SL(2, R)

Since (hL, hR) and (−hL,−hR) give the same action, the
connected component of the isometry group for AdS3 is

SL(2, R)× SL(2, R)/Z2 ≈ SO(2, 2)

.
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BTZ

The BTZ black-hole is obtained by discrete identification of points on the universal covering
space of AdS3. This ensures periodicity in φ, φ ∼ φ+ 2π. The condition is

g ∼ h̃Lgh̃R , h̃L, h̃R ∈ SO(2, 2)

where

h̃L =





eπ(r+−r
−
)/ℓ 0

0 e−π(r+−r
−
)/ℓ



 , h̃R =





eπ(r++r
−
)/ℓ 0

0 e−π(r++r
−
)/ℓ





Thus,

BTZ =
AdS3

< (h̃L, h̃R) >

where < (h̃L, h̃R) > denotes the group generated by (h̃L, h̃R).
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BTZ

The identification breaks the SO(2, 2) group of isometries
to a two-dimensional subgroup GBTZ , consisting of only
the diagonal matrices in {hL} and {hR}.

GBTZ is the isometry group of the BTZ black hole.

We shall now discuss the deformation of this solution.
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NC BTZ

For generic spin, 0 < |J | < Mℓ (and M > 0), we shall search for Poisson brackets for the
matrix elements of g which are polynomial of lowest order. They should be consistent with
the quotienting, as well as the unimodularity condition and the Jacobi identity.
Writing the SL(2, R) matrix as

g =





α β

γ δ



 αδ − βγ = 1 ,

Under the quotienting, we get

α ∼ e 2πr+/ℓ α

β ∼ e−2πr
−
/ℓ β

γ ∼ e 2πr
−
/ℓ γ

δ ∼ e−2πr+/ℓ δ

All quadratic combinations of matrix elements scale differently, except for αδ and βγ, which
are invariant under the quotienting.
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NC BTZ

Lowest order polynomial expressions for the Poisson brackets of α, β, γ and δ which are
preserved under the quotienting are quadratic and have the form

{α, β} = c1αβ {α, γ} = c2αγ {α, δ} = f1(αδ, βγ)

{β, δ} = c3βδ {γ, δ} = c4γδ {β, γ} = f2(αδ, βγ)

where c1−4 are constants and f1,2 are functions.
They are constrained by

c1 + c2 = c3 + c4

f1(αδ, βγ) = (c1 + c2)βγ

f2(αδ, βγ) = (c2 − c4)αδ ,

after demanding that detg is a Casimir of the algebra. There are three independent
constants c1−4.

K.S.Gupta, CENTRA,Lisboa,2012 – p. 26



NC BTZ

Further restrictions on the constants come from the Jacobi
identity, which leads to the following two possibilities:

A. c2 = c4 and B. c2 = −c1

Both cases define two-parameter families of Poisson
brackets. Say we call c2 and c3 the two independent
parameters. The two cases are connected by an SO(2, 2)
transformation.
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NC BTZ

We can write the Poisson brackets for the various cases in terms of the Schwarzschild-like
coordinates (r, t, φ). For the two-parameter families A and B we get
A.

{φ, t} =
ℓ3

2

c3 − c2

r2+ − r2−

{r, φ} = −
ℓr+(c3 + c2)

2r

r2 − r2+

r2+ − r2−

{r, t} = −
ℓ2r−(c3 + c2)

2r

r2 − r2+

r2+ − r2−

B.

{φ, t} =
ℓ3

2

c3 − c2

r2+ − r2−

{r, φ} = −
ℓr−(c2 + c3)

2r

r2 − r2−

r2+ − r2−

{r, t} = −
ℓ2r+(c2 + c3)

2r

r2 − r2−

r2+ − r2−
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NC BTZ

These Poisson brackets are invariant under the action of the isometry group GBTZ of the
BTZ black hole. A central element of the Poisson algebra can be constructed out of the
Schwarzschild coordinates for both cases. It is given by

ρ± = (r2 − r2±) exp

{

−
2κχ±

ℓ

}

, c2 6= c3 ,

where the upper and lower sign correspond to case A and B, respectively,

κ =
c3 + c2

c3 − c2
,

The ρ± =constant surfaces define symplectic leaves, which are topologically R
2 for generic

values of the parameters (more specifically, c2 6= ±c3). We can coordinatize them by χ+

and χ−. One then has a trivial Poisson algebra in the coordinates (χ+, χ−, ρ±):

{χ+, χ−} =
ℓ2

2
(c3 − c2) {ρ±, χ+} = {ρ±, χ−} = 0

The action of the GBTZ transforms one symplectic leaf to another, except for the case
c2 = −c3, on which we focus from now on.
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NC BTZ

For c2 = −c3, the radial coordinate is in the center of the
algebra.

r =constant define R× S1 symplectic leaves, and they
are invariant under the action of GBTZ .

The coordinates φ and t parametrizing any such surface
are canonically conjugate:

{φ, t} =
c3ℓ

3

r2+ − r2−
{φ, r} = {t, r} = 0
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NC BTZ

Upon passing to the “quantum” theory, in terms of the
operators φ̂, t̂ and r̂, we have

[φ̂, t̂] = iθ [φ̂, r̂] = [t̂, r̂] = 0

where the constant θ is linearly related to ℓ3/(r2+ − r2−).

Deformation of BTZ provides an example of the general
space-time noncommutativity given by

[x̂0, x̂1] = iθ

.
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NC BTZ

Since the coordinate φ is periodic, it is better to consider
the operators t̂, eiφ̂ and r̂, which satisfy :

[eiφ̂, t̂] = θeiφ̂ [r̂, t̂] = [r̂, eiφ̂] = 0 ,

This is similar to κ-Minkowski space-time.

There are now two central elements in the algebra:

i) r̂ and ii) e−2πit̂/θ.
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NC BTZ

In an irreducible representation, the central element is
proportional to the identity

e−2πit̂/θ = eiχ1

The spectrum of the time operator t̂ is then discrete

nθ −
χθ

2π
, n ∈ Z

If there is a Hamiltonian description for this analysis, then
the corresponding energy is conserved modulo 2π

θ
.
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Connection with other works

Exact Black Hole Solutions in Noncommutative Gravity
P. Schupp and S. N. Solodukhin [arXiv:0906.2724]

Cosmological and Black Hole Spacetimes in Twisted
Noncommutative Gravity
T. Ohl and A. Schenkel, JHEP 10, 052 (2009)

Both these find NC cylinder as special cases.

We know that the near-horizon geometry of a large class
of commutative black holes contain a BTZ factor. Has the
recurrance of NC cylinder something to do with that?
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QFT in NC BH Background

In standard QFT, the quantization of a field is done by
mode expansion, imposition of suitable commutation
relations on the creation and annihilation operators
depending on the statistics of the field and finally
obtaining a Fock space representation.

In addition, both continuous and discrete symmetries
must act properly on the fields.

We start with a brief description of the κ-Minkowski
algebra.
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κ-Minkowski

The κ-Minkowski space is described by the commutation
relations

[x̂i, x̂j ] = 0, [x̂0, x̂i] = iax̂i ,

where a = 1
κ

is the noncommutativity parameter. In terms
of the Minkowski metric ηµν = diag(−1, 1, 1, 1......, 1), we
can define xµ = ηµαxα and ∂µ = ∂

∂xµ
= ηµα∂α which satisfy

the relations

[xµ, xν ] = 0, [∂µ, ∂ν ] = 0, [∂µ, xν ] = ηµν , [∂µ, xν ] = ηµν

We also define pµ = −i∂µ so that [pµ, xν ] = −iηµν.
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κ-Minkowski

We seek realizations of the noncommutative coordinates
in terms of the commuting coordinates xµ and
corresponding derivatives ∂µ as a power series. A class
of such realizations is given by

x̂µ = xαΦαµ(∂).

It is easy to see that these coordinates obey
[∂µ, x̂ν ] = Φµν(∂). An example of such realizations is given
by

x̂i = xiϕ(A) x̂0 = x0ψ(A) + iaxi∂iγ(A),

where A = −ia∂0 and ϕ(0) = 1, ψ(0) = 1 and
γ(0) = ϕ′(0) + 1 is finite and all are positive functions.
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κ-Minkowski

The ∗ product is defined by

f ⋆ϕ g = m0(Fϕf ⊗ g) = mϕ(f ⊗ g).

The twist operator is given by

Fϕ = exi(∆ϕ−∆0)∂i

and ∆ϕ is the deformed coproduct.
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κ-Minkowski

The twisted flip operator satisfying the condition

[∆ϕ, τϕ] = 0

is given by

τϕ = F−1
ϕ τ0Fϕ.

τϕ = ei(xipi⊗A−A⊗xipi)τ0,

where A = −ia∂0.

Note that τϕ is independent of the choice of realizations.
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Deformed oscilaltor algebra

The product of two bosonic fields φ(x) and φ(y) under
interchange now pick up an additional factor compared to
the commutative case.

φ(x)⊗ φ(y) = e−(A⊗N−N⊗A)φ(y)⊗ φ(x).

The Fourier transform of the above relation gives

φ̃(k)φ̃(p) = e−ia[k0(∂pipi)−p0(∂kiki)]φ̃(p)φ̃(k).
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Deformed oscilaltor algebra

Using the mode decomposition

Φ(x) =

∫

d3p
√

p2i +m2

[

A(ω, ~p)e−ip·x + A†(ω, ~p)eip·x
]

we get

A†(p0, ~p)A(q0, ~q)− e−a(q0∂pipi+∂qiqip0)A(q0, ~q)A
†(p0, ~p) = −δ3(p− q),

A†(p0, ~p)A
†(q0, ~q)− e−a(−q0∂pipi+∂qiqip0)A†(q0, ~q)A

†(p0, ~p) = 0,

A(p0, ~p)A(q0, ~q)− e−a(q0∂pipi−∂qiqip0)A(q0, ~q)A(p0, ~p) = 0.

This defines the deformed oscillator algebra.
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P,T,CPT

Consider the relation

[x0, x1] = iθ

Under P , x1 → −x1, x0 and iθ unchanged. Hence P is not
an automorphism.

Under T , x0 → −x0, iθ → −iθ, x1 unchanged. Hence T is
an automorphism.

As a result, P , PT and CPT violated.

Precision measurements can put bounds on the
noncommutativity parameter.
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Concluding remarks

In the noncommutative framework, implementation of
symmetries in general require a twisted coproduct.
The twisted coproduct leads to twisted flip operator,
twsited statistics and deformed oscillator algebra.
The QFT in such a space-time behaves very differently
compared to the commutative case. In the case of NC
black holes this is expected to affect Hawking radiation
and other quantum effects..
Such a model would lead to violation of P , PT and CPT ,
leading to empirical bounds on the noncommutativity
parameter.
The subject is still in its infancy - lot more work remains to
be done.
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Concluding remarks

However, usual description of holography requires the
introduction of a sharply defined boundary, which is not
possible in the presence of noncommutativity.

It may be possible to handle this problem in the fuzzy
approach or through matrix models. These have not yet
been analyzed in detail in the context of gravity.

Study of noncommutative quantum field theory in curved
space would also be interesting.
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