Superradiant amplification by stars and black-holes

João Luís Rosa
Instituto Superior Técnico
joaoluis92@gmail.com
Phys.Rev.D 91124026 (2015)
July 11, 2015

Overview

(1) Introduction

- Motivation
- Superradiance
(2) Superradiance in stars
- Wave equation
- Amplification
- Stability
(3) Newtonian Limit

4 Conclusions

Outline

(1) Introduction

- Motivation
- Superradiance
(2) Superradiance in stars
- Wave equation
- Amplification
- Stability
(3) Newtonian Limit

4. Conclusions

Motivation

In this thesis we study a phenomenon of amplification of radiation, called superradiance, in astrophysical objects.

Areas of impact: Astrophysics, gravitation and particle physics.
Some applications:

- Search of dark matter candidates and physics beyond the Standard Model (Aranitaki et al. 2011),
- Constrain the mass of ultralight degrees of freedom such as the photon and the graviton (Pani et al. 2012, Brito et al. 2013),
- Study the existence of hairy black-hole and star solutions (Herdeiro et al. 2014).

Outline

(1) Introduction

- Motivation
- Superradiance
(2) Superradiance in stars
- Wave equation
- Amplification
- Stability
(3) Newtonian Limit

4. Conclusions

Superradiance

Superradiance

A radiation enhancement process where the scattering of incident waves on a rotating and dissipative system results in reflected waves with larger amplitude.

Superradiance

Superradiance

A radiation enhancement process where the scattering of incident waves on a rotating and dissipative system results in reflected waves with larger amplitude.

$$
\begin{equation*}
\Psi=e^{-i \omega t-i m \phi} R(r) S(\theta) \tag{1}
\end{equation*}
$$

Superradiance condition:

$$
\begin{equation*}
\omega<m \Omega \tag{2}
\end{equation*}
$$

Superradiance

Superradiance

A radiation enhancement process where the scattering of incident waves on a rotating and dissipative system results in reflected waves with larger amplitude.

$$
\begin{equation*}
\Psi=e^{-i \omega t-i m \phi} R(r) S(\theta) \tag{1}
\end{equation*}
$$

Superradiance condition: $\quad \omega<m \Omega$

Confinement of superradiant modes \rightarrow Instabilities
Presence of a massive field: mass works as a natural confinement.

Outline

(1) Introduction

- Motivation
- Superradiance
(2) Superradiance in stars
- Wave equation
- Amplification
- Stability
(3) Newtonian Limit

4. Conclusions

Wave equation

Inside metric $(r<R)$ (Shapiro and Teukosky 1983)

$$
\begin{equation*}
d s^{2}=-e^{2 \varphi} d t^{2}+\left(1-\frac{2 m(r)}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{3}
\end{equation*}
$$

Wave equation

Inside metric $(r<R)$ (Shapiro and Teukolsky 1983)

$$
\begin{equation*}
d s^{2}=-e^{2 \varphi} d t^{2}+\left(1-\frac{2 m(r)}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{3}
\end{equation*}
$$

Outside metric $(r>R)$

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{4}
\end{equation*}
$$

Wave equation

Inside metric $(r<R)$ (Shapiro and Teukolsky 1983)

$$
\begin{equation*}
d s^{2}=-e^{2 \varphi} d t^{2}+\left(1-\frac{2 m(r)}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{3}
\end{equation*}
$$

Outside metric $(r>R)$

$$
\begin{gather*}
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{4}\\
m(r)=\frac{4}{3} \pi r^{3} \rho, \quad e^{\varphi}=\frac{3}{2} \sqrt{1-\frac{2 M}{R}}-\frac{1}{2} \sqrt{1-\frac{2 M r^{2}}{R^{3}}}
\end{gather*}
$$

Wave equation

Inside metric $(r<R)$ (Shapiro and Teukolsky 1983)

$$
\begin{equation*}
d s^{2}=-e^{2 \varphi} d t^{2}+\left(1-\frac{2 m(r)}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{3}
\end{equation*}
$$

Outside metric $(r>R)$

$$
\begin{gathered}
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
m(r)=\frac{4}{3} \pi r^{3} \rho, \quad e^{\varphi}=\frac{3}{2} \sqrt{1-\frac{2 M}{R}}-\frac{1}{2} \sqrt{1-\frac{2 M r^{2}}{R^{3}}}
\end{gathered}
$$

Stress-energy tensor $(r<R)$

$$
\begin{equation*}
T^{a b}=(\rho+P) U^{a} U^{b}+P g^{a b} . \tag{5}
\end{equation*}
$$

Wave equation

Since $U^{a}=\left(\sqrt{-g^{t t}}, 0,0,0\right)$,

$$
\begin{equation*}
P=\rho\left(\frac{\sqrt{1-2 M r^{2} / R^{3}}-\sqrt{1-2 M / R}}{3 \sqrt{1-2 M / R}-\sqrt{1-2 M r^{2} / R^{3}}}\right), \quad \rho=\frac{3 M}{4 \pi R^{3}} . \tag{6}
\end{equation*}
$$

Outside $(r>R) P=\rho=0 \Longrightarrow \quad T_{a b}=0$.

Wave equation

Since $U^{a}=\left(\sqrt{-g^{t t}}, 0,0,0\right)$,

$$
\begin{equation*}
P=\rho\left(\frac{\sqrt{1-2 M r^{2} / R^{3}}-\sqrt{1-2 M / R}}{3 \sqrt{1-2 M / R}-\sqrt{1-2 M r^{2} / R^{3}}}\right), \quad \rho=\frac{3 M}{4 \pi R^{3}} . \tag{6}
\end{equation*}
$$

Outside $(r>R) P=\rho=0 \Longrightarrow \quad T_{a b}=0$.
Klein-Gordon equation $(r>R \Rightarrow \alpha=0)$:

$$
\begin{equation*}
\nabla_{a} \nabla^{a} \Psi+\alpha \frac{\partial \Psi}{\partial t}=\mu^{2} \Psi \tag{7}
\end{equation*}
$$

Wave equation

Since $U^{a}=\left(\sqrt{-g^{t t}}, 0,0,0\right)$,

$$
\begin{equation*}
P=\rho\left(\frac{\sqrt{1-2 M r^{2} / R^{3}}-\sqrt{1-2 M / R}}{3 \sqrt{1-2 M / R}-\sqrt{1-2 M r^{2} / R^{3}}}\right), \quad \rho=\frac{3 M}{4 \pi R^{3}} . \tag{6}
\end{equation*}
$$

Outside $(r>R) P=\rho=0 \Longrightarrow \quad T_{a b}=0$.
Klein-Gordon equation $(r>R \Rightarrow \alpha=0)$:

$$
\begin{equation*}
\nabla_{a} \nabla^{a} \Psi+\alpha \frac{\partial \Psi}{\partial t}=\mu^{2} \Psi \tag{7}
\end{equation*}
$$

Co-rotating frame ($r<R$ only):

$$
\begin{equation*}
\phi^{\prime}=\phi-\Omega t \quad \Longrightarrow \quad \omega^{\prime}=\omega-m \Omega . \tag{8}
\end{equation*}
$$

Wave equation

Separation of variables with Teukolsky's ansatz

$$
\begin{equation*}
\Psi=e^{-i \omega t-i m \phi} R(r) S(\theta) \tag{9}
\end{equation*}
$$

Wave equation

Separation of variables with Teukolsky's ansatz

$$
\begin{equation*}
\Psi=e^{-i \omega t-i m \phi} R(r) S(\theta) \tag{9}
\end{equation*}
$$

Angular equation

$$
\begin{equation*}
-\cot \theta \frac{\partial_{\theta} S}{S}+\frac{m^{2}}{\sin ^{2} \theta}-\frac{\partial_{\theta} \partial_{\theta} S}{S}=\lambda \tag{10}
\end{equation*}
$$

Wave equation

Separation of variables with Teukolsky's ansatz

$$
\begin{equation*}
\Psi=e^{-i \omega t-i m \phi} R(r) S(\theta) \tag{9}
\end{equation*}
$$

Angular equation

$$
\begin{equation*}
-\cot \theta \frac{\partial_{\theta} S}{S}+\frac{m^{2}}{\sin ^{2} \theta}-\frac{\partial_{\theta} \partial_{\theta} S}{S}=\lambda \tag{10}
\end{equation*}
$$

Simplifying

$$
\begin{gather*}
\frac{\sin \theta}{S} \partial_{\theta}\left(\sin \theta \partial_{\theta} S\right)+\lambda \sin ^{2} \theta=m^{2} \Longrightarrow \lambda=I(I+1) \tag{11}\\
S(\theta)=\sqrt{\frac{(2 I+1)(I-m)!}{4 \pi(I+m)!}} \mathcal{P}_{I}^{m}(\cos \theta) \tag{12}
\end{gather*}
$$

Wave equation

Radial equation: $R^{\prime \prime}(r)+A_{r}(r) R^{\prime}(r)+B_{r}(r) R(r)=0$,

Wave equation

Radial equation: $R^{\prime \prime}(r)+A_{r}(r) R^{\prime}(r)+B_{r}(r) R(r)=0$,
Interior coefficients:

$$
\begin{array}{r}
A_{r}(r)=e^{-\varphi} e^{\varphi \prime}+\frac{2}{r}+\left(1-\frac{2 m(r)}{r}\right)^{-1}\left(\frac{m(r)}{r^{2}}-\frac{m^{\prime}(r)}{r}\right), \\
B_{r}(r)=\left(1-\frac{2 m(r)}{r}\right)^{-1}\left(\omega^{2} e^{-2 \varphi}-\mu^{2}-i \omega \alpha-\frac{\lambda}{r^{2}}\right) . \tag{14}
\end{array}
$$

Wave equation

Radial equation: $R^{\prime \prime}(r)+A_{r}(r) R^{\prime}(r)+B_{r}(r) R(r)=0$,
Interior coefficients:

$$
\begin{gather*}
A_{r}(r)=e^{-\varphi} e^{\varphi \prime}+\frac{2}{r}+\left(1-\frac{2 m(r)}{r}\right)^{-1}\left(\frac{m(r)}{r^{2}}-\frac{m^{\prime}(r)}{r}\right) \tag{13}\\
B_{r}(r)=\left(1-\frac{2 m(r)}{r}\right)^{-1}\left(\omega^{2} e^{-2 \varphi}-\mu^{2}-i \omega \alpha-\frac{\lambda}{r^{2}}\right) \tag{14}
\end{gather*}
$$

Exterior coefficients:

$$
\begin{gather*}
A_{r}(r)=\frac{2}{r}\left(\frac{r-M}{r-2 M}\right) \tag{15}\\
B_{r}(r)=\left(1-\frac{2 M}{r}\right)^{-1}\left[\omega^{2}\left(1-\frac{2 M}{r}\right)^{-1}-\mu^{2}-\frac{\lambda}{r^{2}}\right] \tag{16}
\end{gather*}
$$

Wave equation

Coordinate and function transformation $(r>R)$

$$
\begin{gather*}
u(r)=r R(r), \quad \frac{d r}{d r^{*}}=\left(1-\frac{2 M}{r}\right) \tag{17}\\
\frac{d^{2} u}{d r^{* 2}}+\left[\omega^{2}-V(r)\right] u=0 \tag{18}
\end{gather*}
$$

Wave equation

Coordinate and function transformation $(r>R)$

$$
\begin{gather*}
u(r)=r R(r), \quad \frac{d r}{d r^{*}}=\left(1-\frac{2 M}{r}\right) \tag{17}\\
\frac{d^{2} u}{d r^{* 2}}+\left[\omega^{2}-V(r)\right] u=0 \tag{18}
\end{gather*}
$$

Limit $V(\infty)=\mu^{2} \Longrightarrow u(\infty)=A_{\infty} e^{+i \sqrt{\omega^{2}-\mu^{2}} r^{*}}+B_{\infty} e^{-i \sqrt{\omega^{2}-\mu^{2}} r^{*}}$.

$$
\begin{equation*}
R_{\infty}(r)=e^{ \pm i \sqrt{\omega^{2}-\mu^{2}} r} r^{ \pm \beta} \sum_{n} D_{n} \frac{1}{r^{n}}, \quad \beta=i \frac{M\left(2 \omega^{2}-\mu^{2}\right)}{\sqrt{\omega^{2}-\mu^{2}}} . \tag{19}
\end{equation*}
$$

Wave equation

Coordinate and function transformation $(r>R)$

$$
\begin{gather*}
u(r)=r R(r), \quad \frac{d r}{d r^{*}}=\left(1-\frac{2 M}{r}\right) \tag{17}\\
\frac{d^{2} u}{d r^{* 2}}+\left[\omega^{2}-V(r)\right] u=0 \tag{18}
\end{gather*}
$$

Limit $V(\infty)=\mu^{2} \Longrightarrow u(\infty)=A_{\infty} e^{+i \sqrt{\omega^{2}-\mu^{2}} r^{*}}+B_{\infty} e^{-i \sqrt{\omega^{2}-\mu^{2}} r^{*}}$.

$$
\begin{equation*}
R_{\infty}(r)=e^{ \pm i \sqrt{\omega^{2}-\mu^{2}} r} r^{ \pm \beta} \sum_{n} D_{n} \frac{1}{r^{n}}, \quad \beta=i \frac{M\left(2 \omega^{2}-\mu^{2}\right)}{\sqrt{\omega^{2}-\mu^{2}}} . \tag{19}
\end{equation*}
$$

Limit $r \rightarrow 0$

$$
\begin{gather*}
R^{\prime \prime}(r)+\frac{2}{r} R^{\prime}(r)-\frac{I(I+1)}{r^{2}} R(r)=0 \tag{20}\\
R_{0}(r)=r^{\prime} \sum_{n} C_{n} r^{2 n} \tag{21}
\end{gather*}
$$

Outline

(1) Introduction

- Motivation
- Superradiance
(2) Superradiance in stars
- Wave equation
- Amplification
- Stability
(3) Newtonian Limit

4. Conclusions

Amplification

Series expansions: C_{n} and D_{n} as functions of C_{0} and D_{1}.

- C_{0} : arbitrary (we choose $C_{0}=1$),
- $D_{1}: A_{\infty}$ for the outgoing wave; B_{∞} for the ingoing wave.

Amplification

Series expansions: C_{n} and D_{n} as functions of C_{0} and D_{1}.

- C_{0} : arbitrary (we choose $C_{0}=1$),
- $D_{1}: A_{\infty}$ for the outgoing wave; B_{∞} for the ingoing wave.

Reflection coefficient

$$
\begin{equation*}
Z(\omega)=\frac{\left|A_{\infty}\right|^{2}}{\left|B_{\infty}\right|^{2}} \tag{22}
\end{equation*}
$$

- $Z>1 \Longrightarrow$ medium amplifies,
- $Z<1 \Longrightarrow$ medium absorbs.

Amplification

Figure: $\mu=0, \alpha M=0.1, \Omega M=0.01, I=m=1$.

Outline

(1) Introduction

- Motivation
- Superradiance
(2) Superradiance in stars
- Wave equation
- Amplification
- Stability
(3) Newtonian Limit

4. Conclusions

Stability

If $\mu>\omega \Longrightarrow \pm i \sqrt{\omega^{2}-\mu^{2}}=\mp \sqrt{\mu^{2}-\omega^{2}}$

$$
\begin{equation*}
u(r)=A_{\infty} e^{-\sqrt{\mu^{2}-\omega^{2}} r^{*}}+B_{\infty} e^{+\sqrt{\mu^{2}-\omega^{2}} r^{*}} \tag{23}
\end{equation*}
$$

Stability

If $\mu>\omega \Longrightarrow \pm i \sqrt{\omega^{2}-\mu^{2}}=\mp \sqrt{\mu^{2}-\omega^{2}}$

$$
\begin{equation*}
u(r)=A_{\infty} e^{-\sqrt{\mu^{2}-\omega^{2}} r^{*}}+B_{\infty} e^{+\sqrt{\mu^{2}-\omega^{2}} r^{*}} \tag{23}
\end{equation*}
$$

Regularity: $B_{\infty}=0 \Longrightarrow \omega=\omega_{R}+i \omega_{l} \quad$ Quasi-boundstates

$$
\begin{equation*}
\Psi=e^{\omega_{/} t} e^{-i m \phi-i \omega_{R} t} R(r) S(\theta) \tag{24}
\end{equation*}
$$

- $\omega_{1}>0 \Longrightarrow$ system is unstable,
- $\omega_{l}<0 \Longrightarrow$ system is stable.

Stability

Figure: $\Omega M=0.1, \alpha M=5, R=5 M, I=m=1$.

Stability

Figure: $\alpha M=20, R=4 M, \Omega M=0.2, I=m=1$.

Newtonian limit

If $M / R \ll 1$ and $\Omega R \ll 1$

$$
\begin{equation*}
R^{\prime \prime}(r)+\frac{2}{r} R^{\prime}(r)+\left(\omega^{2}-i \omega \alpha-\frac{\lambda}{r^{2}}\right) R(r)=0 \tag{25}
\end{equation*}
$$

Newtonian limit

If $M / R \ll 1$ and $\Omega R \ll 1$

$$
\begin{equation*}
R^{\prime \prime}(r)+\frac{2}{r} R^{\prime}(r)+\left(\omega^{2}-i \omega \alpha-\frac{\lambda}{r^{2}}\right) R(r)=0 . \tag{25}
\end{equation*}
$$

Solution:

$$
\begin{gather*}
R_{i n t}(r)=j_{l}(r \sqrt{(\omega-m \Omega)(i \alpha+\omega-m \Omega)}), \quad r<R ; \tag{26}\\
R_{e x t}(r)=A j_{l}(r \omega)+B y_{l}(r \omega), \quad r>R \tag{27}
\end{gather*}
$$

Newtonian limit

If $M / R \ll 1$ and $\Omega R \ll 1$

$$
\begin{equation*}
R^{\prime \prime}(r)+\frac{2}{r} R^{\prime}(r)+\left(\omega^{2}-i \omega \alpha-\frac{\lambda}{r^{2}}\right) R(r)=0 . \tag{25}
\end{equation*}
$$

Solution:

$$
\begin{gather*}
R_{\text {int }}(r)=j_{l}(r \sqrt{(\omega-m \Omega)(i \alpha+\omega-m \Omega)}), \quad r<R \tag{26}\\
R_{\text {ext }}(r)=A j_{l}(r \omega)+B y_{l}(r \omega), \quad r>R \tag{27}\\
Z=1+\frac{4 \alpha R^{2}(\Omega-\omega)(\omega R)^{2 I+1}}{(2 I+1)!!(2 I+3)!!}, \tag{28}\\
\alpha=\frac{1}{M}, R=2 M, I=1 \quad \Longrightarrow \quad Z=1+\frac{16}{45} M(\Omega-\omega)(2 M \omega)^{3} . \tag{29}
\end{gather*}
$$

Newtonian limit

Figure: Comparison of the reflection coefficients obtained numerically with the analytical results.

Conclusions

- Stars display superradiance when dissipation is properly included;
- There are no unstable modes for non-rotating stars;
- There are no unstable modes for massless perturbations;
- Unstable modes only occur in the superradiant regime;
- Newtonian systems also display superradiance;
- Relativistic effects related to frame-dragging are neglectable;
- More sofisticated models are needed to describe dissipation.

References

國 V．Cardoso，R．Brito，J．L．Rosa，Phys．Rev．D 91124026 （2015）
A．Arvanitaki，S．Dubovsky，Phys．Rev．D 83， 044026 （2011）
國 P．Pani，V．Cardoso，L．Gualtieri，E．Berti，A．Ishibashi，Phys．Rev．Lett 109 （2012）．
R R．Brito，V．Cardoso，P．Pani，Phys．Rev D88（2013）．
R C．A．R．Herdeiro，E．Radu，Phys．Rev．Lett． 112221101 （2014）．
（i．Y．B．Zeldovich，Pris＇ma Zh．Eksp．Teor．Fiz 14270 （1971）
國 R．Penrose，R．M．Floyd，Nature Physical Science 229177 （1971）
T W．H．Press，S．A．Teukolsky，Nature 238 211－212（1972）
S．A．Teukolsky，Phys．Rev．Lett． 29 1114－1118（1972）
（ S．L．Shapiro，S．A．Teukolsky，Physics Textbook，Wiley－VCH 1983

Relativistic effects

New metric:

$$
\begin{equation*}
d s^{2}=-e^{2 \varphi} d t^{2}+\left(1-\frac{2 m(r)}{r}\right)^{-1} d r^{2}+r^{2}\left[d \theta^{2}+\sin ^{2} \theta(d \phi-\zeta(r) d t)^{2}\right] \tag{30}
\end{equation*}
$$

Relativistic effects

New metric:

$$
\begin{equation*}
d s^{2}=-e^{2 \varphi} d t^{2}+\left(1-\frac{2 m(r)}{r}\right)^{-1} d r^{2}+r^{2}\left[d \theta^{2}+\sin ^{2} \theta(d \phi-\zeta(r) d t)^{2}\right] \tag{30}
\end{equation*}
$$

New quadrivelocity: $U^{a}=$
$\left(\left[-\left(g_{t t}+2 \Omega g_{t \phi}+\Omega^{2} g_{\phi \phi}\right)\right]^{-\frac{1}{2}}, 0,0, \Omega\left[-\left(g_{t t}+2 \Omega g_{t \phi}+\Omega^{2} g_{\phi \phi}\right)\right]^{-\frac{1}{2}}\right)$

Relativistic effects

New metric:
$d s^{2}=-e^{2 \varphi} d t^{2}+\left(1-\frac{2 m(r)}{r}\right)^{-1} d r^{2}+r^{2}\left[d \theta^{2}+\sin ^{2} \theta(d \phi-\zeta(r) d t)^{2}\right]$.
New quadrivelocity: $U^{a}=$
$\left(\left[-\left(g_{t t}+2 \Omega g_{t \phi}+\Omega^{2} g_{\phi \phi}\right)\right]^{-\frac{1}{2}}, 0,0, \Omega\left[-\left(g_{t t}+2 \Omega g_{t \phi}+\Omega^{2} g_{\phi \phi}\right)\right]^{-\frac{1}{2}}\right)$
Interior equation:

$$
\begin{equation*}
\zeta^{\prime \prime}(r)+\frac{1}{2}\left(\frac{8}{r}-\frac{B^{\prime}(r)}{B(r)}-\frac{f^{\prime}(r)}{f(r)}\right) \zeta^{\prime}(r)=16 \pi(\rho+P)(\zeta(r)-\Omega) B(r) . \tag{31}
\end{equation*}
$$

Exterior equation:

$$
\begin{equation*}
\zeta^{\prime \prime}(r)+\frac{4}{r} \zeta^{\prime}(r)=0 \tag{32}
\end{equation*}
$$

Relativistic effects

Outside solution:

$$
\begin{equation*}
\zeta_{\text {out }}(r)=\frac{2 J}{r^{3}}, \tag{33}
\end{equation*}
$$

Boundary condition:

$$
\begin{equation*}
\zeta_{0}(r)=\sum_{n} Z_{n} r^{2 n} \tag{34}
\end{equation*}
$$

Relativistic effects

Outside solution:

$$
\begin{equation*}
\zeta_{\text {out }}(r)=\frac{2 J}{r^{3}} \tag{33}
\end{equation*}
$$

Boundary condition:

$$
\begin{equation*}
\zeta_{0}(r)=\sum_{n} Z_{n} r^{2 n} \tag{34}
\end{equation*}
$$

Matching:

$$
\begin{equation*}
\bar{\zeta}(r)=\Omega-\zeta_{\text {int }}(r) \Longrightarrow J=\frac{1}{6} R^{4} \bar{\zeta}^{\prime}(R), \quad \Omega=\bar{\zeta}(R)+\frac{2 J}{R^{3}} \tag{35}
\end{equation*}
$$

Relativistic effects

Outside solution:

$$
\begin{equation*}
\zeta_{\text {out }}(r)=\frac{2 J}{r^{3}} \tag{33}
\end{equation*}
$$

Boundary condition:

$$
\begin{equation*}
\zeta_{0}(r)=\sum_{n} Z_{n} r^{2 n} \tag{34}
\end{equation*}
$$

Matching:

$$
\begin{equation*}
\bar{\zeta}(r)=\Omega-\zeta_{\text {int }}(r) \Longrightarrow J=\frac{1}{6} R^{4} \bar{\zeta}^{\prime}(R), \quad \Omega=\bar{\zeta}(R)+\frac{2 J}{R^{3}} \tag{35}
\end{equation*}
$$

New coefficient:

$$
\begin{equation*}
B_{r}(r)=\left(1-\frac{2 m(r)}{r}\right)^{-1}\left(\omega(\omega+2 m \zeta(r)) e^{-2 \varphi}-\mu^{2}-i \omega \alpha-\frac{\lambda}{r^{2}}\right) \tag{36}
\end{equation*}
$$

Relativistic effects

Figure: Comparison of the reflection coefficients obtained numerically with the relativistic results

