Superradiant amplification by stars and black-holes

João Luís Rosa

Instituto Superior Técnico

joaoluis92@gmail.com

Phys.Rev.D 91 124026 (2015)

July 11, 2015

João Luís Rosa (IST)

Star and BH superradiance

July 11, 2015 1 / 26

Overview

1 Introduction

- Motivation
- Superradiance

2 Superradiance in stars

- Wave equation
- Amplification
- Stability

3 Newtonian Limit

4 Conclusions

Outline

Introduction

- Motivation
- Superradiance

Superradiance in stars

- Wave equation
- Amplification
- Stability

B Newtonian Limit

Conclusions

In this thesis we study a phenomenon of amplification of radiation, called *superradiance*, in astrophysical objects.

Areas of impact: Astrophysics, gravitation and particle physics.

Some applications:

- Search of dark matter candidates and physics beyond the Standard Model (Arvanitaki et al. 2011),
- Constrain the mass of ultralight degrees of freedom such as the photon and the graviton (Pani et al. 2012, Brito et al. 2013),
- Study the existence of hairy black-hole and star solutions $_{(\text{Herdeiro et al.}\ 2014).}$

Outline

1 Introduction

- Motivation
- Superradiance

Superradiance in stars

- Wave equation
- Amplification
- Stability

Newtonian Limit

Conclusions

Superradiance

A radiation enhancement process where the scattering of incident waves on a **rotating** and **dissipative** system results in reflected waves with larger amplitude.

Superradiance

A radiation enhancement process where the scattering of incident waves on a **rotating** and **dissipative** system results in reflected waves with larger amplitude.

$$\Psi = e^{-i\omega t - im\phi} R(r) S(\theta) \tag{1}$$

Superradiance condition: $\omega < m\Omega$ (2)

Superradiance

A radiation enhancement process where the scattering of incident waves on a **rotating** and **dissipative** system results in reflected waves with larger amplitude.

$$\Psi = e^{-i\omega t - im\phi} R(r) S(\theta) \tag{1}$$

Superradiance condition: $\omega < m\Omega$ (2)

Confinement of superradiant modes \rightarrow Instabilities

Presence of a massive field: mass works as a natural confinement.

João Luís Rosa (IST)

Outline

Introduction

- Motivation
- Superradiance

2 Superradiance in stars

- Wave equation
- Amplification
- Stability

3 Newtonian Limit

Conclusions

Inside metric (r < R) (Shapiro and Teukolsky 1983)

$$ds^{2} = -e^{2\varphi}dt^{2} + \left(1 - \frac{2m(r)}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) \quad (3)$$

- < A

Inside metric (r < R) (Shapiro and Teukolsky 1983)

$$ds^{2} = -e^{2\varphi}dt^{2} + \left(1 - \frac{2m(r)}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) \quad (3)$$

Outside metric (r > R)

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$
(4)

Image: Image:

Inside metric (r < R) (Shapiro and Teukolsky 1983)

$$ds^{2} = -e^{2\varphi}dt^{2} + \left(1 - \frac{2m(r)}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) \quad (3)$$

Outside metric (r > R)

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) \quad (4)$$
$$m(r) = \frac{4}{3}\pi r^{3}\rho, \qquad e^{\varphi} = \frac{3}{2}\sqrt{1 - \frac{2M}{R}} - \frac{1}{2}\sqrt{1 - \frac{2Mr^{2}}{R^{3}}}.$$

Image: Image:

Inside metric (r < R) (Shapiro and Teukolsky 1983)

$$ds^{2} = -e^{2\varphi}dt^{2} + \left(1 - \frac{2m(r)}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) \quad (3)$$

Outside metric (r > R)

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) \quad (4)$$
$$m(r) = \frac{4}{3}\pi r^{3}\rho, \qquad e^{\varphi} = \frac{3}{2}\sqrt{1 - \frac{2M}{R}} - \frac{1}{2}\sqrt{1 - \frac{2Mr^{2}}{R^{3}}}.$$

Stress-energy tensor (r < R)

$$T^{ab} = (\rho + P) U^a U^b + Pg^{ab}.$$
 (5)

Since
$$U^{a} = \left(\sqrt{-g^{tt}}, 0, 0, 0\right)$$
,

$$P = \rho \left(\frac{\sqrt{1 - 2Mr^{2}/R^{3}} - \sqrt{1 - 2M/R}}{3\sqrt{1 - 2M/R} - \sqrt{1 - 2Mr^{2}/R^{3}}}\right), \qquad \rho = \frac{3M}{4\pi R^{3}}.$$
(6)

Outside $(r > R) P = \rho = 0 \implies T_{ab} = 0.$

Since
$$U^{a} = \left(\sqrt{-g^{tt}}, 0, 0, 0\right)$$
,

$$P = \rho \left(\frac{\sqrt{1 - 2Mr^{2}/R^{3}} - \sqrt{1 - 2M/R}}{3\sqrt{1 - 2M/R} - \sqrt{1 - 2Mr^{2}/R^{3}}}\right), \qquad \rho = \frac{3M}{4\pi R^{3}}.$$
(6)

 $\label{eq:alpha} \text{Outside } (r > R) \ P = \rho = 0 \implies T_{ab} = 0.$

Klein-Gordon equation ($r > R \Rightarrow \alpha = 0$):

$$\nabla_{a}\nabla^{a}\Psi + \alpha \frac{\partial\Psi}{\partial t} = \mu^{2}\Psi.$$
(7)

Image: A math a math

Since
$$U^{a} = \left(\sqrt{-g^{tt}}, 0, 0, 0\right)$$
,

$$P = \rho \left(\frac{\sqrt{1 - 2Mr^{2}/R^{3}} - \sqrt{1 - 2M/R}}{3\sqrt{1 - 2M/R} - \sqrt{1 - 2Mr^{2}/R^{3}}}\right), \qquad \rho = \frac{3M}{4\pi R^{3}}.$$
(6)

 $\label{eq:outside_state} \text{Outside}~(r > R)~P = \rho = 0 \implies T_{ab} = 0.$

Klein-Gordon equation ($r > R \Rightarrow \alpha = 0$):

$$\nabla_{a}\nabla^{a}\Psi + \alpha \frac{\partial\Psi}{\partial t} = \mu^{2}\Psi.$$
(7)

Co-rotating frame (r < R only):

$$\phi' = \phi - \Omega t \quad \Longrightarrow \quad \omega' = \omega - m\Omega. \tag{8}$$

Separation of variables with Teukolsky's ansatz

$$\Psi = e^{-i\omega t - im\phi} R(r) S(\theta).$$
(9)

Image: A math a math

Separation of variables with Teukolsky's ansatz

$$\Psi = e^{-i\omega t - im\phi} R(r) S(\theta).$$
(9)

Angular equation

$$-\cot\theta \frac{\partial_{\theta}S}{S} + \frac{m^2}{\sin^2\theta} - \frac{\partial_{\theta}\partial_{\theta}S}{S} = \lambda.$$
(10)

Separation of variables with Teukolsky's ansatz

$$\Psi = e^{-i\omega t - im\phi} R(r) S(\theta).$$
(9)

Angular equation

$$-\cot\theta \frac{\partial_{\theta}S}{S} + \frac{m^2}{\sin^2\theta} - \frac{\partial_{\theta}\partial_{\theta}S}{S} = \lambda.$$
(10)

Simplifying

$$\frac{\sin\theta}{S}\partial_{\theta}\left(\sin\theta\partial_{\theta}S\right) + \lambda\sin^{2}\theta = m^{2} \implies \lambda = l\left(l+1\right).$$
(11)
$$S\left(\theta\right) = \sqrt{\frac{\left(2l+1\right)\left(l-m\right)!}{4\pi\left(l+m\right)!}}\mathcal{P}_{l}^{m}\left(\cos\theta\right).$$
(12)

э

Radial equation: $R''(r) + A_r(r) R'(r) + B_r(r) R(r) = 0$,

Image: A matrix of the second seco

Radial equation: $R''(r) + A_r(r) R'(r) + B_r(r) R(r) = 0$,

Interior coefficients:

$$A_{r}(r) = e^{-\varphi}e^{\varphi'} + \frac{2}{r} + \left(1 - \frac{2m(r)}{r}\right)^{-1}\left(\frac{m(r)}{r^{2}} - \frac{m'(r)}{r}\right), \quad (13)$$

$$B_r(r) = \left(1 - \frac{2m(r)}{r}\right)^{-1} \left(\omega^2 e^{-2\varphi} - \mu^2 - i\omega\alpha - \frac{\lambda}{r^2}\right).$$
(14)

Radial equation: $R''(r) + A_r(r) R'(r) + B_r(r) R(r) = 0$,

Interior coefficients:

$$A_{r}(r) = e^{-\varphi}e^{\varphi'} + \frac{2}{r} + \left(1 - \frac{2m(r)}{r}\right)^{-1}\left(\frac{m(r)}{r^{2}} - \frac{m'(r)}{r}\right), \quad (13)$$

$$B_r(r) = \left(1 - \frac{2m(r)}{r}\right)^{-1} \left(\omega^2 e^{-2\varphi} - \mu^2 - i\omega\alpha - \frac{\lambda}{r^2}\right).$$
(14)

Exterior coefficients:

$$A_r(r) = \frac{2}{r} \left(\frac{r - M}{r - 2M} \right), \tag{15}$$

$$B_r(r) = \left(1 - \frac{2M}{r}\right)^{-1} \left[\omega^2 \left(1 - \frac{2M}{r}\right)^{-1} - \mu^2 - \frac{\lambda}{r^2}\right]$$
(16)

э

Coordinate and function transformation (r > R)

$$u(r) = rR(r), \qquad \frac{dr}{dr^*} = \left(1 - \frac{2M}{r}\right), \qquad (17)$$

$$\frac{d^2 u}{dr^{*2}} + \left[\omega^2 - V(r)\right] u = 0.$$
(18)

Image: Image:

Coordinate and function transformation (r > R)

$$u(r) = rR(r), \qquad \frac{dr}{dr^*} = \left(1 - \frac{2M}{r}\right), \qquad (17)$$

$$\frac{d^{2}u}{dr^{*2}} + \left[\omega^{2} - V(r)\right]u = 0.$$
 (18)

Limit $V(\infty) = \mu^2 \implies u(\infty) = A_{\infty}e^{+i\sqrt{\omega^2 - \mu^2}r^*} + B_{\infty}e^{-i\sqrt{\omega^2 - \mu^2}r^*}.$

$$R_{\infty}(r) = e^{\pm i\sqrt{\omega^2 - \mu^2}r} r^{\pm\beta} \sum_{n} D_n \frac{1}{r^n}, \quad \beta = i \frac{M(2\omega^2 - \mu^2)}{\sqrt{\omega^2 - \mu^2}}.$$
 (19)

イロト 不得 トイヨト イヨト 二日

Coordinate and function transformation (r > R)

$$u(r) = rR(r), \qquad \frac{dr}{dr^*} = \left(1 - \frac{2M}{r}\right), \qquad (17)$$

$$\frac{d^2u}{dr^{*2}} + \left[\omega^2 - V(r)\right]u = 0.$$
 (18)

Limit
$$V(\infty) = \mu^2 \implies u(\infty) = A_{\infty}e^{+i\sqrt{\omega^2 - \mu^2}r^*} + B_{\infty}e^{-i\sqrt{\omega^2 - \mu^2}r^*}.$$

$$R_{\infty}(r) = e^{\pm i\sqrt{\omega^2 - \mu^2}r} r^{\pm\beta} \sum_{n} D_n \frac{1}{r^n}, \quad \beta = i \frac{M(2\omega^2 - \mu^2)}{\sqrt{\omega^2 - \mu^2}}.$$
 (19)

Limit $r \rightarrow 0$

$$R''(r) + \frac{2}{r}R'(r) - \frac{l(l+1)}{r^2}R(r) = 0.$$
 (20)

$$R_0(r) = r' \sum_n C_n r^{2n}.$$
 (21)

Image: A match a ma

3

Outline

Introduction

- Motivation
- Superradiance

2 Superradiance in stars

- Wave equation
- Amplification
- Stability

3 Newtonian Limit

Conclusions

Series expansions: C_n and D_n as functions of C_0 and D_1 .

- C_0 : arbitrary (we choose $C_0 = 1$),
- D_1 : A_{∞} for the **outgoing** wave; B_{∞} for the **ingoing** wave.

Series expansions: C_n and D_n as functions of C_0 and D_1 .

- C_0 : arbitrary (we choose $C_0 = 1$),
- D_1 : A_∞ for the **outgoing** wave; B_∞ for the **ingoing** wave.

Reflection coefficient

$$Z(\omega) = \frac{|A_{\infty}|^2}{|B_{\infty}|^2}.$$
(22)

- $Z > 1 \implies$ medium **amplifies**,
- $Z < 1 \implies$ medium **absorbs**.

Figure: $\mu = 0$, $\alpha M = 0.1$, $\Omega M = 0.01$, l = m = 1.

Outline

Introduction

- Motivation
- Superradiance

2 Superradiance in stars

- Wave equation
- Amplification
- Stability

Newtonian Limit

4 Conclusions

If
$$\mu > \omega \implies \pm i \sqrt{\omega^2 - \mu^2} = \mp \sqrt{\mu^2 - \omega^2}$$

$$u(r) = A_{\infty} e^{-\sqrt{\mu^2 - \omega^2} r^*} + B_{\infty} e^{+\sqrt{\mu^2 - \omega^2} r^*}, \qquad (23)$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

If
$$\mu > \omega \implies \pm i \sqrt{\omega^2 - \mu^2} = \mp \sqrt{\mu^2 - \omega^2}$$

$$u(r) = A_{\infty} e^{-\sqrt{\mu^2 - \omega^2} r^*} + B_{\infty} e^{+\sqrt{\mu^2 - \omega^2} r^*}, \qquad (23)$$

Regularity: $B_{\infty} = 0 \implies \omega = \omega_R + i\omega_I$ Quasi-boundstates

$$\Psi = e^{\omega_I t} e^{-im\phi - i\omega_R t} R(r) S(\theta).$$
(24)

• $\omega_I > 0 \implies$ system is **unstable**,

• $\omega_I < 0 \implies$ system is **stable**.

(日) (周) (三) (三)

Figure: $\Omega M = 0.1$, $\alpha M = 5$, R = 5M, l = m = 1.

Stability

Figure: $\alpha M = 20$, R = 4M, $\Omega M = 0.2$, l = m = 1.

If M/R << 1 and $\Omega R << 1$

$$R''(r) + \frac{2}{r}R'(r) + \left(\omega^2 - i\omega\alpha - \frac{\lambda}{r^2}\right)R(r) = 0.$$
 (25)

If $M/R \ll 1$ and $\Omega R \ll 1$

$$R''(r) + \frac{2}{r}R'(r) + \left(\omega^2 - i\omega\alpha - \frac{\lambda}{r^2}\right)R(r) = 0.$$
 (25)

Solution:

$$R_{int}(r) = j_l \left(r \sqrt{(\omega - m\Omega)(i\alpha + \omega - m\Omega)} \right), \quad r < R;$$
 (26)

$$R_{ext}(r) = Aj_l(r\omega) + By_l(r\omega), \quad r > R.$$
(27)

э

If M/R << 1 and $\Omega R << 1$

$$R''(r) + \frac{2}{r}R'(r) + \left(\omega^2 - i\omega\alpha - \frac{\lambda}{r^2}\right)R(r) = 0.$$
 (25)

Solution:

$$R_{int}(r) = j_l \left(r \sqrt{(\omega - m\Omega)(i\alpha + \omega - m\Omega)} \right), \quad r < R;$$
 (26)

$$R_{ext}(r) = Aj_l(r\omega) + By_l(r\omega), \quad r > R.$$
(27)

$$Z = 1 + \frac{4\alpha R^2 \left(\Omega - \omega\right) \left(\omega R\right)^{2l+1}}{(2l+1)!! (2l+3)!!},$$
(28)

$$\alpha = \frac{1}{M}, R = 2M, I = 1 \implies Z = 1 + \frac{16}{45}M(\Omega - \omega)(2M\omega)^3.$$
(29)

æ

< ロ > < 同 > < 三 > < 三

Figure: Comparison of the reflection coefficients obtained numerically with the analytical results.

Conclusions

- Stars display superradiance when dissipation is properly included;
- There are no unstable modes for non-rotating stars;
- There are no unstable modes for massless perturbations;
- Unstable modes only occur in the superradiant regime;
- Newtonian systems also display superradiance;
- Relativistic effects related to frame-dragging are neglectable;
- More sofisticated models are needed to describe dissipation.

References

- V. Cardoso, R. Brito, J. L. Rosa, *Phys.Rev.D* 91 124026 (2015)
- A. Arvanitaki, S. Dubovsky, *Phys.Rev.D* 83, 044026 (2011)
- P. Pani, V. Cardoso, L. Gualtieri, E. Berti, A. Ishibashi, *Phys.Rev.Lett* **109** (2012).
- R. Brito, V. Cardoso, P. Pani, Phys.Rev D88 (2013).
- C. A. R. Herdeiro, E. Radu, *Phys.Rev.Lett.* **112** 221101 (2014).
 - Y. B. Zeldovich, Pris'ma Zh. Eksp. Teor. Fiz 14 270 (1971)
 - R. Penrose, R. M. Floyd, Nature Physical Science 229 177 (1971)
 - W. H. Press, S. A. Teukolsky, *Nature* 238 211-212 (1972)
- S. A. Teukolsky, *Phys.Rev.Lett.* **29** 1114-1118 (1972)
 - S. L. Shapiro, S. A. Teukolsky, Physics Textbook, Wiley-VCH 1983

New metric:

$$ds^{2} = -e^{2\varphi}dt^{2} + \left(1 - \frac{2m(r)}{r}\right)^{-1}dr^{2} + r^{2}\left[d\theta^{2} + \sin^{2}\theta\left(d\phi - \zeta(r)\,dt\right)^{2}\right].$$
(30)

Image: A math a math

New metric:

$$ds^{2} = -e^{2\varphi}dt^{2} + \left(1 - \frac{2m(r)}{r}\right)^{-1}dr^{2} + r^{2}\left[d\theta^{2} + \sin^{2}\theta\left(d\phi - \zeta(r)\,dt\right)^{2}\right].$$
(30)

New quadrivelocity: $U^a = \left(\left[-\left(g_{tt} + 2\Omega g_{t\phi} + \Omega^2 g_{\phi\phi}\right) \right]^{-\frac{1}{2}}, 0, 0, \Omega \left[-\left(g_{tt} + 2\Omega g_{t\phi} + \Omega^2 g_{\phi\phi}\right) \right]^{-\frac{1}{2}} \right)$

New metric:

$$ds^{2} = -e^{2\varphi}dt^{2} + \left(1 - \frac{2m(r)}{r}\right)^{-1}dr^{2} + r^{2}\left[d\theta^{2} + \sin^{2}\theta\left(d\phi - \zeta(r)\,dt\right)^{2}\right].$$
(30)

New quadrivelocity: $U^a = \left(\left[-\left(g_{tt} + 2\Omega g_{t\phi} + \Omega^2 g_{\phi\phi}\right) \right]^{-\frac{1}{2}}, 0, 0, \Omega \left[-\left(g_{tt} + 2\Omega g_{t\phi} + \Omega^2 g_{\phi\phi}\right) \right]^{-\frac{1}{2}} \right)$

Interior equation:

$$\zeta''(r) + \frac{1}{2} \left(\frac{8}{r} - \frac{B'(r)}{B(r)} - \frac{f'(r)}{f(r)} \right) \zeta'(r) = 16\pi \left(\rho + P \right) \left(\zeta(r) - \Omega \right) B(r).$$
(31)

Exterior equation:

$$\zeta''(r) + \frac{4}{r}\zeta'(r) = 0, \qquad (32)$$

Outside solution:

$$\zeta_{out}\left(r\right) = \frac{2J}{r^3},\tag{33}$$

Boundary condition:

$$\zeta_0(r) = \sum_n Z_n r^{2n}.$$
(34)

Image: Image:

Outside solution:

$$\zeta_{out}\left(r\right) = \frac{2J}{r^3},\tag{33}$$

Boundary condition:

$$\zeta_0(r) = \sum_n Z_n r^{2n}.$$
(34)

Image: Image:

Matching:

$$\bar{\zeta}(r) = \Omega - \zeta_{int}(r) \implies J = \frac{1}{6}R^{4}\bar{\zeta}'(R), \qquad \Omega = \bar{\zeta}(R) + \frac{2J}{R^{3}}.$$
 (35)

Outside solution:

$$\zeta_{out}\left(r\right) = \frac{2J}{r^3},\tag{33}$$

Boundary condition:

$$\zeta_0(r) = \sum_n Z_n r^{2n}.$$
(34)

Matching:

$$\bar{\zeta}(r) = \Omega - \zeta_{int}(r) \implies J = \frac{1}{6} R^4 \bar{\zeta}'(R), \qquad \Omega = \bar{\zeta}(R) + \frac{2J}{R^3}.$$
(35)

New coefficient:

$$B_{r}(r) = \left(1 - \frac{2m(r)}{r}\right)^{-1} \left(\omega\left(\omega + 2m\zeta\left(r\right)\right)e^{-2\varphi} - \mu^{2} - i\omega\alpha - \frac{\lambda}{r^{2}}\right).$$
(36)

э

Figure: Comparison of the reflection coefficients obtained numerically with the relativistic results