Wave Extraction in Higher Dimensional Numerical Relativity

William Cook
with U. Sperhake, P. Figueras.
DAMTP University of Cambridge
VIII Black Holes Workshop
December 22nd, 2015

Overview

(1) Motivation
(2) Wave Extraction: $D=4$ and $D>4$
(3) Numerical Implementation
(4) Results

Overview

(1) Motivation
(2) Wave Extraction: $D=4$ and $D>4$
(3) Numerical Implementation
(4) Results

Motivation

- Why Higher Dimensional Black Hole (BH) collisions?
- TeV gravity theories with large compactified extra dimensions were constructed to explain the hierarchy problem.
- These predict a Planck scale as low as the order of a TeV. (Arkani-Hamed, Dimopoulos, Dvali 1998)
- Current particle collisions could be probing trans-Planckian regimes - potential BH production at LHC.
- Why do we need Wave Extraction?
- To calculate the properties of the final BH after merger, we need to know how much energy, and linear and angular momentum have been radiated away by gravitational waves (GW).

Overview

(1) Motivation

(2) Wave Extraction: $D=4$ and $D>4$
(3) Numerical Implementation
(4) Results

$D=4$

- In 4D there exist several methods for extracting GW from numerical simulations e.g. Newman-Penrose Ψ_{4}, Regge-Wheeler-Zerilli-Moncrief master functions, Landau-Lifshitz pseudotensor.
- We will focus on the Newman-Penrose method and describe how it generalises to $D>4$.

Newman-Penrose formalism

- In the Newman-Penrose formalism the 10 components of the Weyl tensor are encoded into 5 complex scalars: $\Psi_{0} \ldots \Psi_{4}$.
- Define a null tetrad onto which the Weyl tensor is projected

$$
\begin{aligned}
\ell^{\mu} & =\frac{1}{\sqrt{2}}\left(e_{(0)}^{\mu}+e_{(1)}^{\mu}\right) \quad k^{\mu}=\frac{1}{\sqrt{2}}\left(e_{(0)}^{\mu}-e_{(1)}^{\mu}\right) \\
m^{\mu} & =\frac{1}{\sqrt{2}}\left(e_{(2)}^{\mu}+i e_{(3)}^{\mu}\right) \quad \bar{m}^{\mu}=\frac{1}{\sqrt{2}}\left(e_{(2)}^{\mu}-i e_{(3)}^{\mu}\right)
\end{aligned}
$$

- The "peeling property" of the Weyl tensor states that

$$
\psi_{n} \sim \frac{1}{r^{5-n}}
$$

- Ψ_{4} encodes information about outgoing radiation, defined as :

$$
\Psi_{4}=C_{\mu \nu \rho \sigma} k^{\mu} \bar{m}^{\nu} k^{\rho} \bar{m}^{\sigma}
$$

- By comparing this to the linearised Einstein equations in TT gauge we get:

$$
\Psi_{4}=\ddot{h}_{+}-i \ddot{h}_{\times}
$$

Newman-Penrose cont.

- Energy radiated through gravitational waves is given by:

$$
-\frac{d E}{d t}=\lim _{r \rightarrow \infty} \frac{r^{2}}{16 \pi} \int_{S^{2}}\left|\int_{-\infty}^{t} \Psi_{4} d t^{\prime}\right|^{2} d \omega
$$

- We can calculate the Weyl tensor by reconstructing the Riemann tensor from our 3+1 variables over a sphere far from the black hole collision where the Ricci tensor and Ricci scalar vanish.

Higher Dimensional Newman-Penrose

- The peeling property of the Weyl tensor is not so simple in $D>4$. Following Godazgar \& Reall (Phys. Rev. D 85, 084021) we contract the Weyl tensor over a null frame $((I),(J)$ run over $D-2$ orthogonal spatial dimensions):

$$
\ell^{A}=-\frac{\partial}{\partial r}, k^{A}= \pm\left(\frac{\partial}{\partial u}-\frac{1}{2} \frac{\partial}{\partial r}\right)
$$

$m_{(I)}^{A}$ spacelike and orthonormal s.t. $k \cdot m_{(I)}=0$

- We want the object that is the leading order term in $1 / r$, analogous to Ψ_{4},

$$
\Omega_{(I)(J)}^{\prime}=C_{A B C D} k^{A} m_{(I)}^{B} k^{C} m_{(J)}^{D}
$$

Higher Dimensional Newman-Penrose cont

- Using Bondi coordinates to define asymptotic flatness, it is shown that

$$
\Omega_{(I)(J)}^{\prime}=-\frac{1}{2} \frac{e^{\hat{\mathrm{a}}} e_{(I)}^{\hat{b}} \ddot{h}_{(J)}^{(1)}}{r^{D / 2-1}}+\mathcal{O}\left(r^{-D / 2}\right)
$$

where $h_{\hat{a} \hat{b}}^{(1)}$ is the Bondi news function.

- By the definition of Bondi mass

$$
\dot{M}(u)=-\frac{1}{32 \pi} \int_{S^{D-2}} \dot{h}_{\hat{a} \hat{b}}^{(1)} \dot{h}^{(1) \hat{a} \hat{b}} d \omega
$$

we have:

$$
\dot{M}(u)=-\lim _{r \rightarrow \infty} \frac{r^{D-2}}{8 \pi} \int_{S^{D-2}}\left(\int_{-\infty}^{u} \Omega_{(I)(J)}^{\prime}(\hat{u}, r, x) d \hat{u}\right)^{2} d \omega
$$

Overview

(1) Motivation
(2) Wave Extraction: $D=4$ and $D>4$
(3) Numerical Implementation
(4) Results

Modified Cartoon formalism

- We perform a $(D-1)+1$ splitting of our spacetime, and evolve the BSSN equations for $\left(\chi, \tilde{\gamma}_{A B}, K, \tilde{A}_{A B}, \tilde{\Gamma}^{A}\right)$
- Increasing D makes simulations much tougher.
- Don't want to evolve full spacetime - use symmetry to make problem easier.
- Use Modified Cartoon formalism - allows simulation of higher D than other methods, e.g. reduction by isometry. (Yoshino, Shibata 2010; Pretorius 2005)
- Evolve spacetimes with $S O(D-3)$ symmetry as a $3 D$ hypersurface with additional functions defined upon it.

Modified Cartoon cont.

- Define coordinates $\left(x, y, z, w_{a}\right)$, such that symmetry is in $z-w_{a}$ and $w_{a}-w_{b}$ planes.
- Transform to polar coordinates (ρ, φ) in a $z-w_{a}$ plane.
- Apply symmetry conditions: $\partial_{\varphi} g_{A B}=0, g_{A \varphi}=0 A \neq \varphi$.
- Every BSSN variable we work with is constructed from g, so we can apply these conditions to everything we will work with.
- Transform back to Cartesians.
- Set $w=0$.
- We need to introduce one new function for each $(0,2)$ tensor e.g. $\tilde{\gamma}_{w w}, \tilde{A}_{w w}$.
- We can express ∂_{w} in terms of derivatives and quantities in the $x y z$ plane.

Riemann tensor decomposition

- We use this method, and the Gauss and Codazzi equations, to construct the full Riemann tensor from the BSSN modified cartoon variables we evolve.
- We introduce terms involving division by z, which we must regularise.

Constructing the null frame

- We construct normalised basis vectors for the $D-2$ sphere, and evaluate these in our computational domain, giving 2 standard vectors

$$
\begin{aligned}
m_{1} & =\left(0,-y^{2}-z^{2}, x y, x z, 0, \cdots, 0\right) \\
m_{2} & =(0,0,-z, y, 0, \cdots, 0)
\end{aligned}
$$

and the remaining extra-dimensional vectors

$$
\begin{aligned}
m_{3}= & (0,0,0,0,1,0, \ldots, 0) \\
m_{4}= & (0,0,0,0,0,1,0, \ldots, 0) \\
\vdots & \vdots \\
m_{D-2}= & (0, \ldots, 0,1)
\end{aligned}
$$

- We orthonormalise with the radial vector using the Gram-Schmidt process.

Constructing $\Omega_{J J}^{\prime}$

- Construct ingoing null radial vector

$$
k^{A}=\frac{1}{2}\left(\frac{1}{\alpha},-\frac{\beta^{i}}{\alpha}-r^{i}, 0 \ldots, 0\right)
$$

- Contracting with the Riemann tensor we get 4 components for $\Omega_{11}^{\prime}, \Omega_{12}^{\prime}, \Omega_{22}^{\prime}, \Omega_{w w}^{\prime}$ (NB only 3 are independent as $\Omega_{I J}^{\prime}$ is tracefree)

Overview

(1) Motivation
(2) Wave Extraction: $D=4$ and $D>4$
(3) Numerical Implementation
(4) Results

Results

$\dot{M}(u)=-\lim _{r \rightarrow \infty} \frac{r^{D-2}}{8 \pi} \int\left({ }^{\prime} \Omega^{\prime 2}{ }_{11}+2^{\prime} \Omega^{\prime 2}{ }_{12}+\Omega^{\prime} \Omega^{\prime 2}{ }_{22}+(D-4)^{\prime} \Omega^{\prime 2}{ }_{w w}\right) d \omega$

- Using Kodama-Ishibashi perturbative wave extraction, radiated energy for head on collision from rest in 5D has been calculated:
$E_{\mathrm{rad}} / M_{\mathrm{ADM}}=8.9 \pm 0.6 \times 10^{-4}$
(Witek et al. Phys. Rev. D 82, 104014)
- We calculate: $E_{\mathrm{rad}} / M_{\mathrm{ADM}}=9.06 \times 10^{-4}$

Energy radiated in $D=5$

Extraction radius comparison

Conclusions

- We have implemented a new method for calculating energy radiated in GWs in higher dimensional numerical relativity.
- Will allow us to probe higher dimensions than previously possible.
- Complements the perturbative Kodama-Ishibashi method.

Conclusions

- We have implemented a new method for calculating energy radiated in GWs in higher dimensional numerical relativity.
- Will allow us to probe higher dimensions than previously possible.
- Complements the perturbative Kodama-Ishibashi method.

Thank You.

