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Introduction

Matzner, 1968: First work on scattering by black holes.
Bekenstein, 1973: “Extraction of energy and charge from a
black hole”.
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Reissner-Nordström spacetime

The Reissner-Nordström line element is given by

ds2 = f(r)dt2 − f(r)−1dr2 − r2
(
dθ2 + sin2 θdφ2

)
, (1)

where

f(r) =

(
1− 2M

r
+
Q2

r2

)
. (2)
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Klein-Gordon equation

The Klein-Gordon equation is

(∇ν − iqAν)(∇ν − iqAν)Φ = µ2Φ. (3)

The solution to this equation, in the Reissner-Nordström
spacetime is

Φωl =
ψωl(r)

r
Pl(θ)e

−iωt, for ω > µ, (4)

where Pl(θ) is a legendre polynomial and ψωl(r) obeys the
radial equation

f
d

dr

(
f
d

dr
ψωl

)
+
[
ω2 − V (r)

]
ψωl = 0, (5)

with

V (r) =

[(
ω − qQ

r

)2

− f
(
µ2 +

l(l + 1)

r2
+
f ′

r

)]
(6)

being the effective potential.Carolina L. Benone VIII Black Holes Workshop
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We can now rewrite Eq. (5) using the tortoise coordinate,
defined as

d

dr∗
= f

d

dr
. (7)

We find then, for the radial equation,

d2

dr2∗
ψωl +

[
ω2 − V (r)

]
ψωl = 0. (8)
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We find the following solutions for the asymptotic limits:

ψωl(r) ≈
{

Tωl e
−iξr∗ , for r → r+,

e−iρr∗ +Rωle
iρr∗ , for r →∞, (9)

where ξ ≡ ω − qQ/r+ and ρ ≡
√
ω2 − µ2. The coefficients in

these solutions can be identified as the reflection and
transmission coefficients, which obey

|Rωl|2 +
ξ

ρ
|Tωl|2 = 1. (10)
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The absorption cross section is given by

σ =

∞∑
l=0

σl =

∞∑
l=0

π

ρ2
(2l + 1)(1− |Rωl|2) (11)
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High-frequency limit

According to the eikonal approximation we can write

σhf = πb2c , (12)

where bc is the critical impact parameter. Using the geodesics
equations we find(

du

dφ

)2

= −f(u)u2 + (1− f(u))
µ2

L2
+
Q2u2q2

L2

−2QqEu

L2
+
E2 − µ2

L2
, (13)

where u ≡ 1/r and f(u) = 1− 2Mu+Q2u2. E and L are the
energy and the angular momentum of the particle, respectively,
which, in the semiclassical limit can be associated to E → ω
and L→ l + 1/2, respectively.
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Low-frequency limit

To solve the Klein-Gordon equation in this limit we consider
three different regions:

Region I: for r ≈ r+;
Region II: for ω ≈ m ≈ 0;
Region III: for r →∞.

We then make an interpolation between the regions and find
the low-frequency absorption cross section, given by

σlf =
A
ρ

(
ω − qQ

r+

)
, (14)

where A = 4πr2+ is the area of the black hole.
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Numerical results
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Figure : Reflection coefficient as a function of the frequency for
Q/M = 0.8 and l = 0. For the left plot we fix Mµ = 0.4 and for the
right plot Mq = 1.6.
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Figure : Total absorption cross section as a function of the frequency,
for Q/M = 0.4. For the left panel we choose Mµ = 0.4. For the right
panel we choose Mq = 1.6.
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Figure : Comparison between the partial absorption cross section for
l = 0 (σ0) obtained numerically, and the low-frequency approximation
(σlf) for different choices of Mµ. We have chosen Q/M = 0.4 and
Mq = 0.1
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Figure : Partial and total absorption cross sections for Mµ = 0.4. For
the left plot Mq = −0.4 and Q/M = 0.4, while for the right plot
Mq = 1.6 and Q/M = 0.8.
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Conclusion

The total absorption cross section oscillates around the
geometric-optics result.
As we increase the charge coupling qQ, the absorption
cross section gets smaller. This is due to the presence of a
repulsive electromagnetic interaction (the Lorentz force) for
qQ > 0 competing with the gravitational interaction,
causing the decrease of the absorption.
The Lorentz repulsion force can render finite the
low-frequency limit of the absorption cross section.
The result for the low-frequency limit can be regarded as a
generalization of the one obtained for the chargeless
massive scalar field.
Planar scalar waves can be superradiantly amplified in this
case.
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