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Plan

m) Analyze the junction of an interior Minkowski spacetime with an
exterior Reissner-Nordstrom spacetime separated by a static
perfect fluid thin shell.

® Study the properties of a thin shell placed at any allowed
sub-region of the maximally extended Reissner-Nordstrom
spacetime.

® The cases of pressure and tension shells arise naturally
depending on the sub-region where the shell is considered.

® Analyze the energy conditions verified by the thin shell for
each case.



Israel Junction Formalism

mm) Consider two spacetimes (V~,g~) and (V*,g%) matched at a
surface X, forming a new spacetime (V, g). The new spacetime
(V, g) is a valid solution of the Einstein field equations if:

O h;—rj = g;—rﬁe{xe.ﬁ , Where e, are the tangent vectors to X, are

j
such that

® there is a jump on the extrinsic curvature K;; = Vanﬁei“ejﬁ )
where n% is the normal to X, then a thin shell with energy

momentum tensor

Sap = _i([Kab]i — hab [K]i);

8

where n,n% = € and K = h*’K_,, is present at X.



Interior Minkowski Spacetime

m) Consider the interior Minkowski spacetime with metric
ds? = —dt? + dr? + r?dQ?

m) A static shell in the Minkowski spacetime must be
time-like.
m) The radial coordinate of the shell’s, as seen from V™,
is described by a function R(7), such that
dR
o=
m) Using the definition of the extrinsic curvature:

KT_=0,
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5. Exterior Reissner-Nordstrom Spacetime

m) The Reissner-Nordstrom solution describes three distinct
spacetimes depending on the charge to mass ratio.

ds? = —p(r)dt? + ¢~ (r)dr? + r?dQ?,
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Non extremal Reissner- Extremal  Reissner- Overcharged Reissner-
Nordstrdm spacetime Nordstrém spacetime Nordstrdm spacetime



Non Extremal Reissner-Nordstrom Spacetime

m) Start by studying the non-extremal case.

m) \We shall allow the shell to be placed at any
sub-region.

® It is convenient to use Kruskal-Szekeres
coordinates.

® Although it is possible to define a
coordinate system that covers the
entire RN spacetime the metric
becomes too complicated.

® Work instead with two coordinate patches each well
behaved in a neighborhood of the event horizon atr = r, or
in a neighborhood of the Cauchy horizonatr =1_.




Non Extremal Reissner-Nordstrom Spacetime

m) Consider the coordinate patch without coordinate singularity at
r=r;.

=) Introducing the coordinates (T, X, 8, @) such that the RN metric
is given in the new coordinate system by

2

5, 1 r—r_\'TU-/ . . . .
ds® = (m Re R (r ’ ) /) ((1X2 — de) + 1% (X, T)dQ*
7

where




Non Extremal Reissner-Nordstrom Spacetime

=) From the 1 junction condition the radial coordinate of the shell
as seen from VT is the same as seen from V~, such that

ds” L= _dr? L R2O?
=) Since the shell is assumed static
X? — T? = constant

=) From the above relation

0X B T 0T
or X Ot



Non Extremal Reissner-Nordstrom Spacetime

m) The 4-velocity of an observer co-moving with the shell is

gXX
U = \/X:2 — (X.1:0.0)
m) Physically, the above expression is only
valid if X4 —T2 > 0.

® The shell must be either in sub-region |
or .

® Expected, since it is not possible to have
a static time-like shell at the black hole
region.



Non Extremal Reissner-Nordstrom Spacetime

m) From the orthogonality and normalization equations the
expression for the normal to the hypersurface X is

g m
Nia = :|:\/)(‘2 X_XI*-Q (—I X O O)

m) Relate the sign, therefore the direction, of the normal with the
sub-region where the shell is placed.




Non Extremal Reissner-Nordstrom Spacetime

m) Substituting the expressions for components of the normal, the

non-null components of the extrinsic curvature of X when seen
by V7 are

o sgn (X)) roTy
K, = ZRQA (m—l—r—? = )

.. sgn (X
K{y=K{, = %’nﬁ(, 4

with




Non Extremal Reissner-Nordstrom Spacetime

m) Considering the shell is composed by a perfect fluid
5 =oUU" +p (h* - UU)

m) Comparing with the 2" junction condition

2
8no=—=(1—sgn(X)A4),
R
sgn (X 5 T
8mp = stHR(A ) (1 —sgn (X)A) — TR?



Non Extremal Reissner-Nordstrom Spacetime

m) Energy density and pressure support of a thin shell at region |
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Non Extremal Reissner-Nordstrom Spacetime

m) Energy density and tension support of a thin shell at region I’
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Exterior Reissner-Nordstrom Spacetime

2
1o = E(l —sgn(X)A),

sgn (X)
2RA

r_Try

RQ

87p = (1 —sgn (X)A)? -

=) The equations for the properties of the thin shell only depend on
the Kruskal-Szekeres coordinates in the sgn(X) term.

=) The radial coordinate R is well defined for every sub-region of
the non-extremal, extremal and overcharged Reissner-
Nordstrom spacetime.



Exterior Reissner-Nordstrom Spacetime

=) Introducing a new parameter & such that

® ¢ = +1, if the normal points in the direction of increasing
radial coordinate.

® ¢{ = —1, if the normal points in the direction of decreasing
radial coordinate.

)
8o :E (1—-¢A) .
r_T
8Tp = SR (1 {A) iz

m) The properties of the thin shell only depend on the radial
coordinate of the shell, R, hence well defined for the non-
extremal, extremal and overcharged external spacetime.



Non Extremal Reissner-Nordstrom Spacetime

mm) Properties of a thin shell at region I’ of a non

extremal Reissner-Nordstrom spacetime
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Non Extremal Reissner-Nordstrom Spacetime

mm) Properties of a thin shell at region |1l of a non extremal Reissner-
Nordstrém spacetime
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Extremal and Overcharged Reissner-Nordstrom
Spacetime
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Extremal and Overcharged Reissner-Nordstrom
Spacetime
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Energy Conditions

Type

Energy Condition

Null energy condition

Weak energy condition

Dominant energy condition

Strong energy condition

Non-Extremal

a) R > Ry R > Ryp R> Ry Never verified
b) R >ry R >ry R >Ry R>ry
c) 0<R<r. O0<R<r_ 0< R <R O<R<r_

Never verified

Never verified

Never verified

Never verified

Minkowski

Reissner-Nordstrom

b)




Energy Conditions

Energy Condition| _ -
Null energy condition

Weak energy condition

Dominant energy condition

Strong energy condition
Type
a) R >ry R >ry R>ry R>ry
b) R >ry R >ry R>ry Never verified
Extremal
c) Never verified Never verified Never verified Never verified
d) 0<R<re 0<R<ry 0<R<rs 0<R<rs

Minkowski Reissner-Nordstrom
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Energy Conditions

Energy Condition

Null energy condition

Weak energy condition|Dominant energy condition|Strong energy condition
Type
{t) R 2 R]! R 2 R]r R 2 R[l R 2 RO[
Overcharged
]')) R >0 R >0 R >0 R < Rop
Minkowski Reissner-Nordstrom
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