

Static Electrically Charged Shells: Normal Shells and Tension Shells

Paulo Luz

In collaboration with José P. S. Lemos

VIII Black Holes Workshop | 21 – 22 December Lisboa, Portugal

Plan

- Analyze the junction of an interior Minkowski spacetime with an exterior Reissner-Nordström spacetime separated by a static perfect fluid thin shell.
 - Study the properties of a thin shell placed at any allowed sub-region of the maximally extended Reissner-Nordström spacetime.
 - The cases of pressure and tension shells arise naturally depending on the sub-region where the shell is considered.
 - Analyze the energy conditions verified by the thin shell for each case.

Israel Junction Formalism

- Consider two spacetimes (\mathcal{V}^-, g^-) and (\mathcal{V}^+, g^+) matched at a surface Σ , forming a new spacetime (\mathcal{V}, g) . The new spacetime (\mathcal{V}, g) is a valid solution of the Einstein field equations if:
 - $h_{ij}^{\pm} \equiv g_{\alpha\beta}^{\pm} e_i^{\alpha} e_j^{\beta}$, where e_a are the tangent vectors to Σ , are such that

$$[h_{ab}]_{\pm} \equiv h_{ab}^{+} - h_{ab}^{-} = 0;$$

• there is a jump on the extrinsic curvature $K_{ij} \equiv \nabla_{\alpha} n_{\beta} e_i^{\alpha} e_j^{\beta}$, where n^{α} is the normal to Σ , then a thin shell with energy momentum tensor

$$S_{ab} = -\frac{\varepsilon}{8\pi} ([K_{ab}]_{\pm} - h_{ab}[K]_{\pm}),$$

where $n_{\alpha}n^{\alpha} = \varepsilon$ and $K = h^{ab}K_{ab}$, is present at Σ .

Interior Minkowski Spacetime

Consider the interior Minkowski spacetime with metric

$$ds^2 = -dt^2 + dr^2 + r^2 d\Omega^2$$

A static shell in the Minkowski spacetime must be time-like.

The radial coordinate of the shell's, as seen from \mathcal{V}^- , is described by a function $R(\tau)$, such that

$$\frac{d\,R}{d\tau} = 0$$

• Using the definition of the extrinsic curvature:

$$\begin{split} K^{\tau}_{-\tau} &= 0 \;, \\ K^{\theta}_{-\theta} &= \frac{1}{R} \;, \\ K^{\varphi}_{-\varphi} &= \frac{1}{R} \;. \end{split}$$

5. Exterior Reissner-Nordström Spacetime

The Reissner-Nordström solution describes three distinct spacetimes depending on the charge to mass ratio.

$$ds^{2} = -\phi(r)dt^{2} + \phi^{-1}(r)dr^{2} + r^{2}d\Omega^{2},$$

$$\phi(r) = 1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}$$

Overcharged Reissner-Nordström spacetime

- Start by studying the non-extremal case.
- We shall allow the shell to be placed at any sub-region.
 - It is convenient to use Kruskal-Szekeres coordinates.
 - Although it is possible to define a coordinate system that covers the entire RN spacetime the metric becomes too complicated.

• Work instead with two coordinate patches each well behaved in a neighborhood of the event horizon at $r = r_+$ or in a neighborhood of the Cauchy horizon at $r = r_-$.

- Consider the coordinate patch without coordinate singularity at $r = r_+$.
- Introducing the coordinates (T, X, θ, φ) such that the RN metric is given in the new coordinate system by

$$ds^{2} = \frac{16m^{2}}{r^{2}}R_{+}^{2}e^{-\frac{r}{R_{+}}}\left(\frac{r-r_{-}}{2m}\right)^{1+\left(r_{-}/r_{+}\right)^{2}}\left(dX^{2}-dT^{2}\right)+r^{2}\left(X,T\right)d\Omega^{2}$$

where

$$r_{\pm} = M \pm \sqrt{M^2 - Q^2}$$
$$R_{\pm} = \frac{r_{\pm}^2}{r_+ - r_-}$$
$$X^2 - T^2 = e^{\frac{r}{R_+}} \left(\frac{r - r_+}{2m}\right) \left(\frac{r - r_-}{2m}\right)^{-\left(r_-/r_+\right)^2}$$

From the 1st junction condition the radial coordinate of the shell as seen from \mathcal{V}^+ is the same as seen from \mathcal{V}^- , such that

$$ds^2\Big|_{\Sigma} = -d\tau^2 + R^2 d\Omega^2$$

Since the shell is assumed static

$$X^2 - T^2 = \text{constant}$$

From the above relation

$$\frac{\partial X}{\partial \tau} = \frac{T}{X} \frac{\partial T}{\partial \tau}$$

The 4-velocity of an observer co-moving with the shell is

$$U_{+}^{\alpha} = \sqrt{\frac{g^{XX}}{X^2 - T^2}} \left(X, T, 0, 0 \right)$$

Physically, the above expression is only valid if $X^2 - T^2 > 0$.

- The shell must be either in sub-region I or I'.
- Expected, since it is not possible to have a static time-like shell at the black hole region.

From the orthogonality and normalization equations the expression for the normal to the hypersurface Σ is

$$n_{+\alpha} = \pm \sqrt{\frac{g_{XX}}{X^2 - T^2}} \left(-T, X, 0, 0 \right)$$

Relate the sign, therefore the direction, of the normal with the sub-region where the shell is placed.

$$n_{+\alpha} = \operatorname{sgn}(X) \sqrt{\frac{g_{XX}}{X^2 - T^2}} \left(-T, X, 0, 0\right)$$

Substituting the expressions for components of the normal, the non-null components of the extrinsic curvature of Σ when seen by \mathcal{V}^+ are

$$K_{+\tau}^{\tau} = \frac{\operatorname{sgn}(X)}{2R^2 A} \left(r_+ + r_- - 2\frac{r_- r_+}{R} \right)$$
$$K_{+\theta}^{\theta} = K_{+\varphi}^{\varphi} = \frac{\operatorname{sgn}(X)}{R} A$$

with

$$A = \sqrt{\frac{(R - r_{+})(R - r_{-})}{R^2}}$$

Considering the shell is composed by a perfect fluid

$$S^{ab} = \sigma U^a U^b + p \left(h^{ab} - U^a U^b \right)$$

Comparing with the 2nd junction condition

$$8\pi\sigma = \frac{2}{R}\left(1 - \operatorname{sgn}\left(X\right)A\right) \,,$$

$$8\pi p = \frac{\operatorname{sgn}(X)}{2RA} \left[(1 - \operatorname{sgn}(X)A)^2 - \frac{r_- r_+}{R^2} \right]$$

Energy density and pressure support of a thin shell at region I

Energy density and tension support of a thin shell at region I'

Exterior Reissner-Nordström Spacetime

$$8\pi\sigma = \frac{2}{R}\left(1 - \operatorname{sgn}\left(X\right)A\right)\,,$$

$$8\pi p = \frac{\text{sgn}(X)}{2RA} \left[(1 - \text{sgn}(X)A)^2 - \frac{r_- r_+}{R^2} \right]$$

- The equations for the properties of the thin shell only depend on the Kruskal-Szekeres coordinates in the sgn(X) term.
- The radial coordinate R is well defined for every sub-region of the non-extremal, extremal and overcharged Reissner-Nordström spacetime.

Exterior Reissner-Nordström Spacetime

- \blacksquare Introducing a new parameter ξ such that
 - $\xi = +1$, if the normal points in the direction of increasing radial coordinate.
 - $\xi = -1$, if the normal points in the direction of decreasing radial coordinate.

$$\begin{split} &8\pi\sigma = &\frac{2}{R} \left(1 - \xi A \right) \,, \\ &8\pi p = &\frac{\xi}{2RA} \left[\left(1 - \xi A \right)^2 - \frac{r_- r_+}{R^2} \right] \end{split}$$

The properties of the thin shell only depend on the radial coordinate of the shell, R, hence well defined for the non-extremal, extremal and overcharged external spacetime.

Properties of a thin shell at region III' of a non extremal Reissner-Nordström spacetime

Properties of a thin shell at region III of a non extremal Reissner-Nordström spacetime

Extremal and Overcharged Reissner-Nordström Spacetime

Minkowski – Extremal Reissner-Nordström

Minkowski – Overcharged Reissner-Nordström

Extremal and Overcharged Reissner-Nordström Spacetime

Energy Conditions

Туре	Energy Condition	Null energy condition	Weak energy condition	Dominant energy condition	Strong energy condition
Non-Extremal	a)	$R \ge R_{\mathrm{I}'}$	$R \ge R_{\mathrm{I}'}$	$R \ge R_{\mathrm{I}'}$	Never verified
	b)	$R > r_+$	$R > r_+$	$R \ge R_{\rm I}$	$R > r_+$
	c)	$0 < R < r_{-}$	$0 < R < r_{-}$	$0 < R \le R_{\mathrm{III}}$	$0 < R < r_{-}$
	d)	Never verified	Never verified	Never verified	Never verified

Energy Conditions

Type	Energy Condition	Null energy condition	Weak energy condition	Dominant energy condition	Strong energy condition
Extremal	a)	$R > r_+$	$R > r_+$	$R > r_+$	$R > r_+$
	b)	$R > r_+$	$R > r_+$	$R > r_+$	Never verified
	c)	Never verified	Never verified	Never verified	Never verified
	d)	$0 < R < r_+$	$0 < R < r_{+}$	$0 < R < r_{+}$	$0 < R < r_+$

Energy Conditions

Туре	Energy Condition	Null energy condition	Weak energy condition	Dominant energy condition	Strong energy condition
Overcharged	a)	$R \ge R_{\mathrm{I}'}$	$R \ge R_{\mathbf{I}'}$	$R \ge R_{\mathbf{I}'}$	$R \ge R_{\rm OI}$
	b)	R > 0	R > 0	R > 0	$R \le R_{\rm OI'}$

