Near-horizon geometry and integral quantities for strongly "magnetised" black holes

Filip Hejda

Centro Multidisciplinar de Astrofísica, Departamento de Física, Instituto Superior Técnico Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University

with Jiří Bičák

Near-horizon geometry and integral quantities for strongly "magnetised" black holes

Filip Hejda

Centro Multidisciplinar de Astrofísica, Departamento de Física, Instituto Superior Técnico Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University

with Jiří Bičák

arXiv:1510.00301 [gr-qc] arXiv:1510.01911 [gr-qc], PhysRevD.92.104006

Black holes in magnetic universes

- Harrison transformation applied to the Minkowski spacetime yields magnetic universe of Bonnor and Melvin
- "Magnetised" black holes from asymptotically flat ones; MKN metric

$$oldsymbol{g} = |\Lambda|^2 \, arsigma \left[-rac{arsigma}{\mathscr{A}} \, \mathbf{d}t^2 + rac{\mathbf{d}r^2}{arDeta} + \mathbf{d}artheta^2
ight] + rac{\mathscr{A}}{arsigma \left[arsigma
ight|_2^2 \sin^2artheta \left(\mathbf{d}arphi - \omega \, \mathbf{d}t
ight)^2
ight]$$

Black holes in magnetic universes

- Harrison transformation applied to the Minkowski spacetime yields magnetic universe of Bonnor and Melvin
- "Magnetised" black holes from asymptotically flat ones; MKN metric

$$\boldsymbol{g} = |\Lambda|^2 \Sigma \left[-\frac{\Delta}{\mathscr{A}} \, \mathbf{d}t^2 + \frac{\mathbf{d}r^2}{\Delta} + \mathbf{d}\vartheta^2 \right] + \frac{\mathscr{A}}{\Sigma |\Lambda|^2} \sin^2 \vartheta \left(\mathbf{d}\varphi - \omega \, \mathbf{d}t \right)^2$$

• Function Λ is constructed from Ernst potentials

$$\begin{split} \Lambda &= 1 + \frac{1}{4} B^2 \left(\frac{\mathscr{A} + a^2 Q^2 \left(1 + \cos^2 \vartheta \right)}{\varSigma} \sin^2 \vartheta + Q^2 \cos^2 \vartheta \right) + \\ &+ \frac{BQ}{\varSigma} \left[ar \sin^2 \vartheta - i \left(r^2 + a^2 \right) \cos \vartheta \right] - \\ &- \frac{i}{2} B^2 a \cos \vartheta \left[M \left(3 - \cos^2 \vartheta \right) + \frac{Ma^2 \sin^2 \vartheta - Q^2 r}{\varSigma} \sin^2 \vartheta \right] \end{split}$$

2 / 17

Black holes in magnetic universes

- Harrison transformation applied to the Minkowski spacetime yields magnetic universe of Bonnor and Melvin
- "Magnetised" black holes from asymptotically flat ones; MKN metric

$$\boldsymbol{g} = |\Lambda|^2 \Sigma \left[-\frac{\Delta}{\mathscr{A}} \, \mathbf{d}t^2 + \frac{\mathbf{d}r^2}{\Delta} + \mathbf{d}\vartheta^2 \right] + \frac{\mathscr{A}}{\Sigma |\Lambda|^2} \sin^2 \vartheta \left(\mathbf{d}\varphi - \omega \, \mathbf{d}t \right)^2$$

• Function Λ is constructed from Ernst potentials

$$\begin{split} \Lambda &= 1 + \frac{1}{4} B^2 \left(\frac{\mathscr{A} + a^2 Q^2 \left(1 + \cos^2 \vartheta \right)}{\varSigma} \sin^2 \vartheta + Q^2 \cos^2 \vartheta \right) + \\ &+ \frac{BQ}{\varSigma} \left[ar \sin^2 \vartheta - i \left(r^2 + a^2 \right) \cos \vartheta \right] - \\ &- \frac{i}{2} B^2 a \cos \vartheta \left[M \left(3 - \cos^2 \vartheta \right) + \frac{Ma^2 \sin^2 \vartheta - Q^2 r}{\varSigma} \sin^2 \vartheta \right] \end{split}$$

• Complicated form of dragging potential ω and of electromagnetic field Filip Hejda (CENTRA-IST) Near-horizon geometry of extremal MKN 21st December 2015 2 / 17 The potential Φ_0 is given by

$$\Phi_0 = \frac{\Phi_0^{(0)} + \Phi_0^{(1)}B + \Phi_0^{(2)}B^2 + \Phi_0^{(1)}B^3}{4\Sigma},$$
(B.17)

where

$$\begin{split} \Phi_0^{(n)} &= 4(-qr(r^2+a^2)+aq\Delta\cos\theta), \\ \Phi_0^{(n)} &= -aq^2(r^2+a^2+\Delta\cos^2\theta), \\ \Phi_0^{(n)} &= -aq^2(r^2+a^2+\Delta\cos^2\theta), \\ \Phi_0^{(n)} &= -3q(r+2m)a^2 - (r^2+4mr+\Delta\cos^2\theta)r^3 + a^2(2q^2(r+2m)-6mr^2-8m^2r\\ &-3\Delta r\cos^2\theta) + 3p\Delta(3m^2+a^2) + a^2(aq^2+q^2-r)\cos^2\theta(\cos\theta), \\ \Phi_0^{(n)} &= -\frac{1}{2}a(4a^4m^2+12a^2m^2^2+2a^2q^2+2a^4mr-24a^2m^2r+a^2m^2r^2\\ &-24a^2m^2r^2 - aa^2m^2 - 12m^2r^2 - a^2r^2 - 6mr^2 - 6mr^2(2m^2+r^2)\\ &-q^2r(\cos^2\theta + \Delta(q^2-3q^2r^2+2m^3+a^2(4m^2+q^2-6mr))\cos^4\theta), \\ \end{split}$$

(B.18)

The quantity ω is given by

$$\omega = \frac{(2mr - \tilde{q}^2)a + \omega_{\scriptscriptstyle (1)}B + \omega_{\scriptscriptstyle (2)}B^2 + \omega_{\scriptscriptstyle (2)}B^3 + \omega_{\scriptscriptstyle (4)}B^4}{\Sigma}, \quad (B.8)$$

where

$$\begin{split} \omega_{00} &= -\frac{2}{2}qr(^2 + a^2) + 2ap\Delta\cos\theta, \\ \omega_{01} &= -\frac{1}{2}aq^2(r^2 + a^2 + \Delta\cos^2\theta), \\ \omega_{01} &= 4qm^2a^2r + \frac{1}{2}apq^2\cos^3\theta + \frac{1}{2}qr(r^2 + a^2)[r^2 - a^2 + (r^2 + 3a^2)\cos^2\theta] \\ &+ \frac{1}{2}apq^2(r^2 + a^2)[3r^2 + a^2 - (r^2 - a^2)\cos^2\theta]\cos\theta \\ &+ \frac{1}{2}q\bar{q}^2r((r^2 + 3a^2)\cos^2\theta - 2ar^2] + \frac{1}{2}ap\bar{q}^2[3r^2 + a^2 + 2a^2\cos^2\theta]\cos\theta \\ &- am\bar{q}^2(2aq + pr\cos^2\theta) + qm(r^4 - a^4 + r^2(r^2 + 3a^2)\sin^2\theta] \\ &- apmr[2R^2 + (r^2 + a^2)\sin^2\theta]\cos\theta, \\ \omega_{01} &= \frac{1}{2}a^3m^2(r^2)\cos^2\theta + \frac{1}{2}aq^2r^2(r^2) + \sin^2\theta)\cos^2\theta + a^2(1 + \cos^4\theta)] \\ &+ \frac{1}{16}a\bar{q}^2(r^2 + a^2)[r^2(1 - 6\cos^2\theta + 3\cos^2\theta) - a^2(1 + \cos^4\theta)] \\ &+ \frac{1}{4}am\bar{q}^2r^2(3 + \cos^4\theta) + \frac{1}{4}amr^2(r^2) + \cos^2\theta) \\ &+ 2ar^2r^2(3\sin^2\theta - 2\cos^2\theta) + 4(1 + \cos^4\theta)] \\ &+ \frac{1}{4}am\bar{q}^2r\cos^4\theta + \frac{1}{4}am\bar{q}^2r^2(2r^2(3 - \cos^2\theta)\cos^2\theta) \\ &- a^2(1 - 6\cos^2\theta - 3\cos^4\theta)], \\ &- a^2(1 - 6\cos^2\theta - 3\cos^4\theta)]. \end{split} \tag{B.9}$$

The potential $\Phi_3 = \chi$ is given by

$$\Phi_3 = \chi = \frac{\chi_{(0)} + \chi_{(1)}B + \chi_{(2)}B^2 + \chi_{(3)}B^3}{R^2 H},$$
(B.15)

where

$$\begin{split} \chi_m &= aq^2 \sin^2 \theta - p(r^2 + a^2) \cos \theta, \\ \chi_n &= \frac{1}{2} [\sum \sin^2 \theta + 3q^2 (a^2 + r^2 \cos^2 \theta)], \\ \chi_m &= \frac{1}{4} aqr(r^2 + a^2) \sin^4 \theta - \frac{1}{2} p(r^2 + a^2)^2 \sin^2 \theta \cos \theta + 3a^2 pmr \sin^2 \theta \cos \theta \\ &\quad + \frac{1}{4} aqm(r^2 - 3a^2) \cos^2 \theta + a^2 (1 + \cos^2 \theta)] - \frac{1}{4} aqq^2 r \sin^2 \theta \cos^2 \theta \\ &\quad - \frac{1}{4} pq_1^2 ((r^2 - a^2) \cos^2 \theta + 2a^2) \cos \theta, \\ \chi_m &= \frac{1}{4} R^2 (r^2 + a^2) \sin^2 \theta + \frac{1}{4} a^2 m(r^2 + a^2) \sin^2 \theta - \frac{1}{4} a^2 q^2 mr(5 - \cos^2 \theta) \sin^2 \theta \cos^2 \theta \\ &\quad + \frac{1}{4} a^2 m^2 (r^2 - a^2) c^2 \theta + a^2 (1 + \cos^2 \theta)^2] \\ &\quad + \frac{1}{4} q^2 (r^2 + a^2) (r^2 + a^2 + a^2 \sin^2 \theta) \sin^2 \theta \cos^2 \theta \\ &\quad + \frac{1}{4} q^2 (r^2 - a^2) (r^2 - a^2 + a^2 + a^2 \sin^2 \theta) \sin^2 \theta \cos^2 \theta \\ &\quad + \frac{1}{4} q^2 (r^2 - a^2) (r^2 - a^2 + a^2 + a^2 \sin^2 \theta) \sin^2 \theta \cos^2 \theta \end{split}$$

Black holes in magnetic universes II

- Gibbons, G. W., Mujtaba, A. H., Pope, C. N. Ergoregions in magnetized black hole spacetimes. Classical and Quantum Gravity, <u>30</u>. 2013.
- Problem with interpretation of the azimuthal coordinate, axis regular if

$$\varphi \in \left(0, 2\pi \left[1 + \frac{3}{2}B^2Q^2 + 2B^3MQa + B^4\left(\frac{1}{16}Q^4 + M^2a^2\right)\right]\right)$$

- Non-flat asymptotics resembling, but not identical to the Bonnor-Melvin magnetic universe
- Approximately flat region if

$$r_+ \ll r \ll \frac{1}{B}$$

Black holes in magnetic universes II

- Gibbons, G. W., Mujtaba, A. H., Pope, C. N. Ergoregions in magnetized black hole spacetimes. Classical and Quantum Gravity, <u>30</u>. 2013.
- Problem with interpretation of the azimuthal coordinate, axis regular if

$$\varphi \in \left(0, 2\pi \left[1 + \frac{3}{2}B^2Q^2 + 2B^3MQa + B^4\left(\frac{1}{16}Q^4 + M^2a^2\right)\right]\right)$$

- Non-flat asymptotics resembling, but not identical to the Bonnor-Melvin magnetic universe
- Approximately flat region if

$$r_+ \ll r \ll \frac{1}{B}$$

• Note: Generalised electrostatic potential $\phi = -A_t - \omega A_{\varphi}$

Infinite throat

(Reissner-Nordström, Q = M, t = const.)

Filip Hejda (CENTRA-IST)

Near-horizon geometry of extremal MKN

Recipe for near-horizon limit of the metric

- **Carter**, Brandon. *Black hole equilibrium states*. Les Houches Lectures, 1972.
- Bardeen, J., Horowitz, G. T. Extreme Kerr throat geometry: A vacuum analog of $AdS_2 \times \mathscr{S}^2$. Physical Review D, <u>60</u>. 1999.

Recipe for near-horizon limit of the metric

- **Carter**, Brandon. *Black hole equilibrium states*. Les Houches Lectures, 1972.
- Bardeen, J., Horowitz, G. T. Extreme Kerr throat geometry: A vacuum analog of $AdS_2 \times \mathscr{S}^2$. Physical Review D, <u>60</u>. 1999.
- One can factorise out a function \varDelta from some metric coefficients of a general axially symmetric stationary metric

$$m{g} = - arDelta ilde{m{N}}^2 \, {f d} t^2 + m{g}_{arphi arphi} \, ({f d} arphi - \omega \, {f d} t)^2 + rac{ ilde{m{g}}_{rr}}{arDelta} \, {f d} r^2 + m{g}_{artheta artheta} \, {f d} artheta^2$$

- Let us assume that the black hole is extremal and coordinate r is chosen so that hypersurface $r = r_0$ is the degenerate horizon
- Then set

$$\varDelta = (r - r_0)^2$$

Recipe for near-horizon limit of the metric II

• Coordinate transformation depending on a limiting parameter p

$$r = r_0 + p\chi$$
$$t = \frac{\tau}{p}$$

• Assume that $\tilde{N}, \tilde{g}_{rr}, g_{\varphi\varphi}, g_{\vartheta\vartheta}$ as functions of χ have a finite, nonzero limit for $p \to 0$, so that just this expression is left to resolve

$$\mathbf{d}\varphi - \omega \, \mathbf{d}t$$

• Expansion of the dragging potential

$$\omega \doteq \omega_{\rm H} + \frac{\partial \omega}{\partial r} \Big|_{r_0} (r - r_0) = \omega_{\rm H} + \frac{\partial \omega}{\partial r} \Big|_{r_0} p\chi$$

Recipe for near-horizon limit of the metric III

• Plugging in the expansion we get

$$\mathbf{d}\varphi - \omega \,\mathbf{d}t \doteq \mathbf{d}\varphi - \left(\omega_{\mathsf{H}} + \left.\frac{\partial\omega}{\partial r}\right|_{r_0} p\chi\right) \frac{\mathbf{d}\tau}{p} = \mathbf{d}\varphi - \frac{\omega_{\mathsf{H}}}{p} \,\mathbf{d}\tau - \left.\frac{\partial\omega}{\partial r}\right|_{r_0} \chi \,\mathbf{d}\tau$$

• It is necessary to add "rewinding" of the azimuthal angle

$$\varphi = \psi + \frac{\omega_{\rm H}}{p}\tau$$

Recipe for near-horizon limit of the metric III

• Plugging in the expansion we get

$$\mathbf{d}\varphi - \omega \,\mathbf{d}t \doteq \mathbf{d}\varphi - \left(\omega_{\mathsf{H}} + \left.\frac{\partial\omega}{\partial r}\right|_{r_0} p\chi\right) \frac{\mathbf{d}\tau}{p} = \mathbf{d}\varphi - \frac{\omega_{\mathsf{H}}}{p} \,\mathbf{d}\tau - \left.\frac{\partial\omega}{\partial r}\right|_{r_0} \chi \,\mathbf{d}\tau$$

• It is necessary to add "rewinding" of the azimuthal angle

$$\varphi = \psi + \frac{\omega_{\rm H}}{p}\tau$$

• For the Kerr-Newman solution we get the following limiting metric

$$g = \left[Q^2 + a^2 \left(1 + \cos^2 \vartheta\right)\right] \left(-\frac{\chi^2}{\left(Q^2 + 2a^2\right)^2} \, \mathrm{d}\tau^2 + \mathrm{d}\vartheta^2 + \frac{\mathrm{d}\chi^2}{\chi^2}\right) + \frac{\left(Q^2 + 2a^2\right)^2}{Q^2 + a^2 \left(1 + \cos^2 \vartheta\right)} \sin^2 \vartheta \left(\mathrm{d}\psi + \frac{2a\sqrt{Q^2 + a^2}\chi}{\left(Q^2 + 2a^2\right)^2} \, \mathrm{d}\tau\right)^2$$

Near-horizon limit

Near-horizon limit of the electromagnetic field

• Again, we should expand to the first order and rearrange the terms $A = A_t \, \mathbf{d}t + A_{\varphi} \, \mathbf{d}\varphi \doteq$

$$\begin{split} &\doteq \left(\left. A_t \right|_{r_0} + \left. \frac{\partial A_t}{\partial r} \right|_{r_0} p\chi \right) \frac{\mathbf{d}\tau}{p} + \left(\left. A_{\varphi} \right|_{r_0} + \left. \frac{\partial A_{\varphi}}{\partial r} \right|_{r_0} p\chi \right) \left(\mathbf{d}\psi + \frac{\omega_{\mathsf{H}}}{p} \, \mathbf{d}\tau \right) \doteq \\ &\doteq \left(\left. A_t \right|_{r_0} + \omega_{\mathsf{H}} \left. A_{\varphi} \right|_{r_0} \right) \frac{\mathbf{d}\tau}{p} + \left(\left. \frac{\partial A_t}{\partial r} \right|_{r_0} + \omega_{\mathsf{H}} \left. \frac{\partial A_{\varphi}}{\partial r} \right|_{r_0} \right) \chi \, \mathbf{d}\tau + \left. A_{\varphi} \right|_{r_0} \, \mathbf{d}\psi = \\ &= -\frac{\phi_{\mathsf{H}}}{p} \, \mathbf{d}\tau + \left(\left. \frac{\partial A_t}{\partial r} \right|_{r_0} + \omega_{\mathsf{H}} \left. \frac{\partial A_{\varphi}}{\partial r} \right|_{r_0} \right) \chi \, \mathbf{d}\tau + \left. A_{\varphi} \right|_{r_0} \, \mathbf{d}\psi \end{split}$$

• We assume the generalised electrostatic potential of the horizon $\phi_{\rm H}$ to be constant, so we can get rid of the singular term by changing gauge

Near-horizon limit

Near-horizon limit of the electromagnetic field

• Again, we should expand to the first order and rearrange the terms $A = A_t \, \mathbf{d}t + A_{\varphi} \, \mathbf{d}\varphi \doteq$

$$\begin{split} &\doteq \left(\left. A_t \right|_{r_0} + \left. \frac{\partial A_t}{\partial r} \right|_{r_0} p\chi \right) \frac{\mathbf{d}\tau}{p} + \left(\left. A_{\varphi} \right|_{r_0} + \left. \frac{\partial A_{\varphi}}{\partial r} \right|_{r_0} p\chi \right) \left(\mathbf{d}\psi + \frac{\omega_{\mathsf{H}}}{p} \, \mathbf{d}\tau \right) \doteq \\ &\doteq \left(\left. A_t \right|_{r_0} + \omega_{\mathsf{H}} \left. A_{\varphi} \right|_{r_0} \right) \frac{\mathbf{d}\tau}{p} + \left(\left. \frac{\partial A_t}{\partial r} \right|_{r_0} + \omega_{\mathsf{H}} \left. \frac{\partial A_{\varphi}}{\partial r} \right|_{r_0} \right) \chi \, \mathbf{d}\tau + \left. A_{\varphi} \right|_{r_0} \, \mathbf{d}\psi = \\ &= -\frac{\phi_{\mathsf{H}}}{p} \, \mathbf{d}\tau + \left(\left. \frac{\partial A_t}{\partial r} \right|_{r_0} + \omega_{\mathsf{H}} \left. \frac{\partial A_{\varphi}}{\partial r} \right|_{r_0} \right) \chi \, \mathbf{d}\tau + \left. A_{\varphi} \right|_{r_0} \, \mathbf{d}\psi \end{split}$$

 We assume the generalised electrostatic potential of the horizon φ_H to be constant, so we can get rid of the singular term by changing gauge
 For Kerr-Newman we get

$$\boldsymbol{A} = \frac{Q}{Q^2 + a^2 \left(1 + \cos^2 \vartheta\right)} \left(\frac{Q^2 + a^2 \sin^2 \vartheta}{Q^2 + 2a^2} \chi \, \mathbf{d}\tau + a \sqrt{Q^2 + a^2} \sin^2 \vartheta \, \mathbf{d}\psi\right)$$

Filip Hejda (CENTRA-IST)

General facts for extremal MKN black hole near the horizon

• Metric has a simple structure involving AdS₂

$$g = f(\vartheta) \left(-\frac{\chi^2}{(Q^2 + 2a^2)^2} \, \mathbf{d}\tau^2 + \frac{\mathbf{d}\chi^2}{\chi^2} + \mathbf{d}\vartheta^2 \right) + \frac{(Q^2 + 2a^2)^2 \sin^2 \vartheta}{f(\vartheta)} \, (\mathbf{d}\psi - \tilde{\omega}\chi \, \mathbf{d}\tau)^2$$

• Potentials do not depend on latitude

$$\omega = \tilde{\omega}\chi \qquad \qquad \phi = \tilde{\phi}\chi$$

Electromagnetic field is highly constrained

$$\begin{aligned} \mathcal{A}_{\tau} &= \left. \left(\tilde{\mathcal{N}} \sqrt{\tilde{g}_{rr}} \mathcal{F}_{(r)(t)} \right) \right|_{r_0} \chi \equiv \tilde{\mathcal{A}}_{\tau}(\vartheta) \, \chi \\ \mathcal{A}_{\psi}(\vartheta) &= \frac{1}{\tilde{\omega}} \left(\tilde{\mathcal{A}}_{\tau}(0) - \tilde{\mathcal{A}}_{\tau}(\vartheta) \right) \qquad \qquad \phi = - \left. \mathcal{A}_{\tau} \right|_{\vartheta = 0} \end{aligned}$$

Near-horizon limit of extremal MKN black hole (raw)

$$\begin{aligned} \text{OutII2} &= \frac{1}{64 \left(a^{2} + 2^{2} + a^{2} \operatorname{Cos}\left(p\right)^{2}\right)} \left(3 \frac{a^{2} + 2 \quad 2^{2} + a^{2} \quad \operatorname{Cos}\left(p\right)^{2}}{64 \quad 6^{2} + 2^{2} + a^{2} \quad \operatorname{Cos}\left(p\right)^{2}} \left(4 + 5 \quad B^{2} \quad Q^{2} + 2 \quad B^{2} \quad Q^{2} \quad B^{2} \quad B^{2} \quad Q^{2} \quad B^{2} \quad B^{2} \quad Q^{2} \quad B^{2} \quad B^{2} \quad B^{2} \quad Q^{2} \quad B^{2} \quad B^{2} \quad B^{2} \quad Q^{2} \quad B^{2} \quad B^{2} \quad Q^{2} \quad B^{$$

The equivalence

• The near-horizon description of a MKN black hole can be obtained from the one of the Kerr-Newman solution, using effective parameters:

$$\begin{split} \hat{M} &= \sqrt{Q^2 + a^2} \left(1 + \frac{1}{4} B^2 Q^2 + B^2 a^2 \right) + BQa \\ \hat{a} &= a \left(1 - \frac{3}{4} B^2 Q^2 - B^2 a^2 \right) - BQ \sqrt{Q^2 + a^2} \\ \hat{Q} &= Q \left(1 - \frac{1}{4} B^2 Q^2 \right) + 2Ba \sqrt{Q^2 + a^2} \end{split}$$

• Note that by definition $\hat{M}^2 = \hat{Q}^2 + \hat{a}^2$

• Rescaling of the Killing vectors

$$\Xi = \frac{1}{1 + \frac{3}{2}B^2Q^2 + 2B^3Qa\sqrt{Q^2 + a^2} + B^4\left(\frac{1}{16}Q^4 + Q^2a^2 + a^4\right)}$$

Near-horizon limit of extremal MKN black hole (factorised)

Results

Filip Hejda (CENTRA-IST)

Near-horizon geometry of extremal MKN

Parameter space of a near-horizon MKN: $\hat{a} = \hat{M} \cos \hat{\gamma}_{KN}, \hat{Q} = \hat{M} \sin \hat{\gamma}_{KN}$

Filip Hejda (CENTRA-IST)

Near-horizon geometry of extremal MKN

Corollaries, related facts

• General curve describing equivalent geometries

$$BM = \frac{4\cos\gamma_{\rm KN} - \sin 2\gamma_{\rm KN}\sin\hat{\gamma}_{\rm KN} \mp 2\left(1 + \cos^2\gamma_{\rm KN}\right)\cos\hat{\gamma}_{\rm KN}}{\sin^3\gamma_{\rm KN} + \left(1 + 3\cos^2\gamma_{\rm KN}\right)\sin\hat{\gamma}_{\rm KN}}$$

Corollaries, related facts

• General curve describing equivalent geometries

$$BM = \frac{4\cos\gamma_{\rm KN} - \sin 2\gamma_{\rm KN}\sin\hat{\gamma}_{\rm KN} \mp 2\left(1 + \cos^2\gamma_{\rm KN}\right)\cos\hat{\gamma}_{\rm KN}}{\sin^3\gamma_{\rm KN} + \left(1 + 3\cos^2\gamma_{\rm KN}\right)\sin\hat{\gamma}_{\rm KN}}$$

- Lewandowski, J., Pawlowski, T., Extremal isolated horizons: A local uniqueness theorem, Classical Quantum Gravity, <u>20</u>, 2003.
- All the extremal isolated horizons form a two-parameter family $\{\mathscr{S}_{\mathsf{H}}, Q_{\mathsf{H}}\}$, i.e. they are all Kerr-Newman ones

Corollaries, related facts

• General curve describing equivalent geometries

$$BM = \frac{4\cos\gamma_{\rm KN} - \sin 2\gamma_{\rm KN}\sin\hat{\gamma}_{\rm KN} \mp 2\left(1 + \cos^2\gamma_{\rm KN}\right)\cos\hat{\gamma}_{\rm KN}}{\sin^3\gamma_{\rm KN} + \left(1 + 3\cos^2\gamma_{\rm KN}\right)\sin\hat{\gamma}_{\rm KN}}$$

- Lewandowski, J., Pawlowski, T., *Extremal isolated horizons: A local uniqueness theorem*, Classical Quantum Gravity, <u>20</u>, 2003.
- All the extremal isolated horizons form a two-parameter family $\{\mathscr{S}_{\mathsf{H}}, Q_{\mathsf{H}}\}$, i.e. they are all Kerr-Newman ones
- **Gibbons**, G. W. , **Pang**, Yi, **Pope**, C. N. *Thermodynamics of magnetized Kerr-Newman black holes*. Physical Review D, <u>89</u>, 2014.
- Booth, I., Hunt, M. et al., Insights from Melvin-Kerr-Newman spacetimes, Classical Quantum Gravity, <u>32</u>, 2015.
- Intuitive angular momentum $\hat{J} \equiv \hat{a}\hat{M}, \ \hat{J} = J_{\rm W} = J_{\rm IH}$
- Different masses $M_{
 m KK}\equiv {}^{M\!/arsigma}$, $M_{
 m KK}
 eq \hat{M}=M_{
 m IH}$ (open problem)

Corollaries II, Meissner effect

- Four Killing vectors leading to a Killing tensor
- Galajinsky, A., Orekhov, K., N = 2 superparticle near horizon of extreme Kerr–Newman–AdS–dS black hole, Nuclear Physics B <u>850</u>, 2011.

Corollaries II, Meissner effect

- Four Killing vectors leading to a Killing tensor
- Galajinsky, A., Orekhov, K., N = 2 superparticle near horizon of extreme Kerr–Newman–AdS–dS black hole, Nuclear Physics B <u>850</u>, 2011.
- We can substitute for â

$$\hat{a} = \frac{\operatorname{sgn} \hat{J}}{\sqrt{2}} \sqrt{\sqrt{\hat{Q}^4 + 4\hat{J}^2} - \hat{Q}^2}$$

• Magnetic flux through the upper hemisphere of the horizon

$$\mathscr{F}_{\mathsf{H}} = 2\pi rac{\mathcal{A}_{\psi}|_{artheta = rac{\pi}{2}}}{\varXi} = 2\pi rac{\hat{Q}\hat{a}}{\hat{M}} = rac{4\pi \hat{Q}\hat{J}}{\hat{Q}^2 + \sqrt{\hat{Q}^4 + 4\hat{J}^2}}$$

• Karas, V., Vokrouhlický, D. *On interpretation of the magnetized Kerr-Newman black hole.* Journal of Mathematical Physics, <u>32</u>, 714-716, 1991.

Filip Hejda (CENTRA-IST) Near-horizon geometry of extremal MKN

Thank you for your attention/Acknowledgements

• The work was supported by research grants of Charles University in Prague: SVV No. 260211 and 265301: "Actual problems in theoretical physics, astronomy and astrophysics"

GAUK No. 606412: "Examination of fields in curved spacetimes"

