Gravitomagnetism and the meaning of the scalar invariants of the Riemann tensor

L. Filipe O. Costa*, Lode Wylleman ${ }^{\dagger}$, José Natário*

*CAMGSD, IST- Lisbon
${ }^{\dagger}$ Faculty of Applied Sciences, University of Ghent - Belgium

Black Holes Workshop VIII, Lisbon

Introduction

- Mass/energy currents originate effects strongly resembling magnetism: "gravitomagnetism" (Ex: frame dragging)
- Translational gravitomagnetism (detected to high precision)
- Orbital perturbations: Binary Pulsars; Moon's orbit
- Spin vector geodetic precession: Gravity Probe B, binary pulsars
- Rotational gravitomagnetism (more elusive): Earth's, detected by Laser Ranging to the LAGEOS satellites, and with Gravity Probe B

Introduction

- Translational gravitomagnetism is dubbed "extrinsic", rotational gravitomagnetism dubbed "intrinsic",
- Classification based on the formal analogy between the quadratic invariants of the Riemann and Maxwell tensors

$$
\{\mathbf{F} \cdot \mathbf{F}, \star \mathbf{F} \cdot \mathbf{F}\} \leftrightarrow\{\mathbf{R} \cdot \mathbf{R}, \star \mathbf{R} \cdot \mathbf{R}\}
$$

- Gravitomagnetic effects measured in regions where $\star \mathbf{R} \cdot \mathbf{R}=0$ implied to be different in nature from the ones where $\star \mathbf{R} \cdot \mathbf{R} \neq 0$

Scalar Invariants - Electromagnetism

$$
\vec{E}^{2}-\vec{B}^{2}=-\frac{1}{2} F_{\alpha \beta} F^{\alpha \beta} \quad \vec{E} \cdot \vec{B}=-\frac{1}{4} F_{\alpha \beta} \star F^{\alpha \beta}
$$

- $\vec{E} \cdot \vec{B} \neq 0 \Rightarrow \vec{E}$ and \vec{B} are both non-vanishing for all observers
- $\vec{E} \cdot \vec{B}=0$ and $\vec{E}^{2}-\vec{B}^{2}>0 \Rightarrow$ there are observers for which \vec{B} vanishes.

- their velocity is of the form $\vec{v}=\vec{v}_{\| p}+\vec{v}_{\| E}$, having a component $\vec{v}_{\| p}$ along the Poynting vector, and an arbitrary component $\vec{v}_{\| E}$ along the electric field.

Scalar Invariants - Electromagnetism

$$
\vec{E}^{2}-\vec{B}^{2}=-\frac{1}{2} F_{\alpha \beta} F^{\alpha \beta} \quad \vec{E} \cdot \vec{B}=-\frac{1}{4} F_{\alpha \beta} \star F^{\alpha \beta}
$$

- $\vec{E} \cdot \vec{B} \neq 0 \Rightarrow \vec{E}$ and \vec{B} are both non-vanishing for all observers
- $\vec{E} \cdot \vec{B}=0$ and $\vec{E}^{2}-\vec{B}^{2}>0 \Rightarrow$ there are observers for which \vec{B} vanishes.

- their velocity is of the form $\vec{v}=\vec{v}_{\| p}+\vec{v}_{\| E}$, having a component $\vec{v}_{\| p}$ along the Poynting vector, and an arbitrary component $\vec{v}_{\| E}$ along the electric field.
- $\vec{E} \cdot \vec{B}=0$ and $\vec{E}^{2}-\vec{B}^{2}<0 \Rightarrow$ there are observers for which the electric field \vec{E} vanishes (analogously).

Scalar Invariants - Electromagnetism

$$
\vec{E}^{2}-\vec{B}^{2}=-\frac{1}{2} F_{\alpha \beta} F^{\alpha \beta}
$$

$$
\vec{E} \cdot \vec{B}=-\frac{1}{4} F_{\alpha \beta} \star F^{\alpha \beta}
$$

- $\vec{E} \cdot \vec{B} \neq 0 \Rightarrow \vec{E}$ and \vec{B} are both non-vanishing for all observers
- $\vec{E} \cdot \vec{B}=0$ and $\vec{E}^{2}-\vec{B}^{2}>0 \Rightarrow$ there are observers for which \vec{B} vanishes.

- $F_{\alpha \beta}$ has two principal null directions k_{1}^{α} and k_{2}^{α}, such that $k^{[\alpha} F^{\beta]}{ }_{\gamma} k^{\gamma}=0$
- the 4 -velocities u^{α} of the observers measuring $B^{\alpha}=0$ are any unit time-like vector lying in the plane spanned by k_{1}^{α} and k_{2}^{α}.

Scalar Invariants - Electromagnetism

$$
\vec{E}^{2}-\vec{B}^{2}=-\frac{1}{2} F_{\alpha \beta} F^{\alpha \beta} \quad \vec{E} \cdot \vec{B}=-\frac{1}{4} F_{\alpha \beta} \star F^{\alpha \beta}
$$

- $\vec{E} \cdot \vec{B}=0$ and $\vec{E}^{2}=\vec{B}^{2}=0 \Rightarrow$ null field: either $F^{\alpha \beta}=0$, or pure radiation.
- $\vec{E}^{2}-\vec{B}^{2}$ and $\vec{E} \cdot \vec{B}$ are the only algebraically independent invariants one can define from the Maxwell tensor $F^{\alpha \beta}$.

Curvature scalar invariants (vacuum)

In vacuum, the Riemann tensor decomposes irreducibly as

$$
\begin{aligned}
R_{\alpha \beta}^{\gamma \delta}= & 4\left\{2 U_{[\alpha} U^{[\gamma}+g_{[\alpha}^{[\gamma}\right\} \mathbb{E}_{\beta]}^{\delta]} \\
& +2\left\{\epsilon_{\alpha \beta \mu \nu} \mathbb{H}^{\mu[\delta} U^{\gamma]} U^{\nu}+\epsilon^{\gamma \delta \mu \nu} \mathbb{H}_{\mu[\beta} U_{\alpha]} U_{\nu}\right\}
\end{aligned}
$$

- $\mathbb{E}_{\alpha \beta}=R_{\alpha \mu \beta \nu} U^{\mu} U^{\nu} \equiv$ electric part of the Riemann tensor (gravitoelectric tidal tensor)
- $\mathbb{H}_{\alpha \beta}=\star R_{\alpha \mu \beta \nu} U^{\mu} U^{\nu} \equiv$ magnetic part of the Riemann tensor (gravitomagnetic tidal tensor)
- Analogous to the splitting of $F_{\alpha \beta}$ into electric $E^{\alpha} \equiv F^{\alpha \beta} U_{\beta}$ and magnetic fields $E^{\alpha} \equiv \star F^{\alpha \beta} U_{\beta}$

$$
F_{\alpha \beta}=2 U_{[\alpha} E_{\beta]}+\epsilon_{\alpha \beta \gamma \delta} B^{\gamma} U^{\delta}
$$

Curvature scalar invariants (vacuum)

In vacuum, one can construct 4 independent scalar invariants from the Riemann tensor (would be 14 in general).

- The two quadratic invariants

$$
\begin{aligned}
\mathbb{E}^{\alpha \gamma} \mathbb{E}_{\alpha \gamma}-\mathbb{H}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} & =\frac{1}{8} R_{\alpha \beta \gamma \delta} R^{\alpha \beta \gamma \delta} \equiv \frac{1}{8} \mathbf{R} \cdot \mathbf{R} \\
\mathbb{E}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} & =\frac{1}{16} R_{\alpha \beta \gamma \delta} \star R^{\alpha \beta \gamma \delta} \equiv \frac{1}{16} \star \mathbf{R} \cdot \mathbf{R}
\end{aligned}
$$

formally analogous to the electromagnetic invariants

$$
\begin{aligned}
E^{\alpha} E_{\alpha}-B^{\alpha} B_{\alpha} & =-\frac{1}{2} F^{\alpha \beta} F_{\alpha \beta} \equiv \frac{1}{2} \mathbf{F} \cdot \mathbf{F} \\
E^{\alpha} B_{\alpha} & =-\frac{1}{4} \star F^{\alpha \beta} F_{\alpha \beta} \equiv-\frac{1}{4} \star \mathbf{F} \cdot \mathbf{F}
\end{aligned}
$$

Curvature scalar invariants (vacuum)

In vacuum, one can construct 4 independent scalar invariants from the Riemann tensor (would be 14 in general).

- The two quadratic invariants

$$
\begin{aligned}
\mathbb{E}^{\alpha \gamma} \mathbb{E}_{\alpha \gamma}-\mathbb{H}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} & =\frac{1}{8} R_{\alpha \beta \gamma \delta} R^{\alpha \beta \gamma \delta} \equiv \frac{1}{8} \mathbf{R} \cdot \mathbf{R} \\
\mathbb{E}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma} & =\frac{1}{16} R_{\alpha \beta \gamma \delta} \star R^{\alpha \beta \gamma \delta} \equiv \frac{1}{16} \star \mathbf{R} \cdot \mathbf{R}
\end{aligned}
$$

- and the two cubic invariants

$$
\begin{aligned}
\mathbb{E}_{\beta}^{\alpha} \mathbb{E}^{\beta}{ }_{\gamma} \mathbb{E}^{\gamma}{ }_{\alpha}-3 \mathbb{E}_{\beta}^{\alpha} \mathbb{H}^{\beta}{ }_{\gamma} \mathbb{H}^{\gamma}{ }_{\alpha} & =\frac{1}{16} R^{\alpha \beta}{ }_{\lambda \mu} R^{\lambda \mu}{ }_{\rho \sigma} R^{\rho \sigma} R^{\rho \sigma}{ }_{\alpha \beta} \\
\mathbb{H}^{\alpha}{ }_{\beta} \mathbb{H}^{\beta}{ }_{\gamma} \mathbb{H}^{\gamma}{ }_{\alpha}-3 \mathbb{E}_{\beta}^{\alpha} \mathbb{E}^{\beta}{ }_{\gamma} \mathbb{H}^{\gamma}{ }_{\alpha} & =\frac{1}{16} R^{\alpha \beta}{ }_{\lambda \mu} R^{\lambda \mu}{ }_{\rho \sigma} R^{\rho \sigma} \star R^{\rho \sigma}{ }_{\alpha \beta}
\end{aligned}
$$

- These invariants are related to conditions for the existence of observers for which $\mathbb{E}_{\alpha \beta}$ or $\mathbb{H}_{\alpha \beta}$ vanish
- all are needed, and still they are not sufficient

Curvature scalar invariants (vacuum)

Define $\mathbb{Q}_{\alpha \beta}=\mathbb{E}_{\alpha \beta}-i \mathbb{H}_{\alpha \beta}$

- Sum of two spatial tensors, each of them diagonalizable
- The existence of observers for which $\mathbb{H}_{\alpha \beta}=0\left(\mathbb{E}_{\alpha \beta}=0\right)$ is equivalent to existence of observers for which
- $\mathbb{Q}_{\alpha \beta}$ is diagonalizable,
- with real (purely imaginary) eigenvalues
- and allowing for a basis of real orthonormal eigenvectors
- these are observer independent features - the eigenvalue problem for $\mathbb{Q}_{\alpha \beta}$ is a way of formulating the Petrov classification
- Diagonalizable types are Petrov types I and D

Curvature scalar invariants (vacuum)

Existence of observers measuring $\mathbb{H}_{\alpha \beta}=0\left(\right.$ or $\left.\mathbb{E}_{\alpha \beta}=0\right)$ needs

- $\star \mathbf{R} \cdot \mathbf{R}=0, \mathbf{R} \cdot \mathbf{R}>0(<0)$
- $\mathbb{A}=\mathbb{B}=0$ or $\mathbb{M}>0$ (real) or Petrov type D

$$
\begin{aligned}
\mathbb{M} & \equiv I^{3} /(\mathbb{A}+i \mathbb{B})^{2}-6 \\
\mathbb{A} & \equiv \frac{1}{16} R_{\lambda \mu}^{\alpha \beta} R^{\lambda \mu}{ }_{\rho \sigma} R^{\rho \sigma} R^{\rho \sigma}{ }_{\alpha \beta} \\
\mathbb{B} & \equiv \frac{1}{16} R_{\lambda \mu}^{\alpha \beta} R^{\lambda \mu}{ }_{\rho \sigma} R^{\rho \sigma} \star R^{\rho \sigma}{ }_{\alpha \beta} \\
I & \equiv \frac{1}{8} \mathbf{R} \cdot \mathbf{R}-\frac{i}{8} \star \mathbf{R} \cdot \mathbf{R}
\end{aligned}
$$

- the Petrov type D condition cannot be stated in terms of invariants
- as $\mathbb{M}=0$ for both type D and the non-diagonalizable type II

Vacuum Petrov type D - strong electromagnetic analogy

- $\star \mathbf{R} \cdot \mathbf{R} \neq 0 \Rightarrow \mathbb{E}_{\alpha \beta}$ and $\mathbb{H}_{\alpha \beta}$ are both non-vanishing for all observers.
- $\star \mathbf{R} \cdot \mathbf{R}=0$ and $\mathbf{R} \cdot \mathbf{R}>0(<0) \Rightarrow$ there are observers for which $\mathbb{H}_{\alpha \beta}\left(\mathbb{E}_{\alpha \beta}\right)$ vanishes

- they are boosted along the "super-Poynting" vector $\overrightarrow{\mathcal{P}}=\overleftrightarrow{\mathbb{E}} \times \overleftrightarrow{\mathbb{H}}$ with a velocity

$$
\vec{v}_{\| \mathcal{P}}=\frac{\overleftrightarrow{\mathbb{E}} \times \overleftrightarrow{\mathbb{H}}}{9|\lambda|^{2} A(A+1)} \quad \text { i.e. } \quad v_{\| \mathcal{P}}^{\alpha}=\frac{\epsilon^{\alpha \beta \gamma \delta} \mathbb{E}_{\beta \mu} \mathbb{H}_{\gamma}{ }^{\mu} u_{\delta}}{9|\lambda|^{2} A(A+1)}
$$

- analogous to the electromagnetic counterpart

$$
\vec{v}_{\| p}=\frac{\vec{E} \times \vec{B}}{\vec{E}^{2}} \quad \text { i.e. } \quad v_{\| p}^{\alpha}=\frac{\epsilon_{\sigma \tau \beta}^{\alpha} E^{\sigma} B^{\tau} u^{\beta}}{E_{\nu} E^{\nu}}
$$

Vacuum Petrov type D - strong electromagnetic analogy

$-\star \mathbf{R} \cdot \mathbf{R} \neq 0 \Rightarrow \mathbb{E}_{\alpha \beta}$ and $\mathbb{H}_{\alpha \beta}$ are both non-vanishing for all observers.

- $\star \mathbf{R} \cdot \mathbf{R}=0$ and $\star \mathbf{R} \cdot \mathbf{R}>0(<0) \Rightarrow$ there are observers for which $\mathbb{H}_{\alpha \beta}\left(\mathbb{E}_{\alpha \beta}\right)$ vanishes

- $R_{\alpha \beta \gamma \delta}$ has two principal null directions k_{1}^{α} and k_{2}^{α}, such that $\boldsymbol{k}^{[\alpha} R_{\gamma \delta \epsilon}^{\beta]} \boldsymbol{k}^{\gamma} \boldsymbol{k}^{\epsilon}=0$
- the 4-velocities u^{α} of the observers measuring $\mathbb{H}_{\alpha \beta}=0\left(\mathbb{E}_{\alpha \beta}=0\right)$ are any unit time-like vector lying in the plane spanned by k_{1}^{α} and k_{2}^{α}.

Vacuum Petrov type I

In the (vacuum) Petrov type I case the situation is different, and not analogous to electromagnetism:

- the observer measuring $\mathbb{H}_{\alpha \beta}=0\left(\mathbb{E}_{\alpha \beta}=0\right)($ when $\star \mathbf{R} \cdot \mathbf{R}=0$ and $\star \mathbf{R} \cdot \mathbf{R}>0(<0)$ are satisfied) is unique
- they are not obtained by boosting in the direction of the super-Poynting vector $\overrightarrow{\mathcal{P}}$

General case in the presence of sources

- a similar classification always holds for the Weyl tensor C, and its electric $\mathcal{E}_{\alpha \beta} \equiv C_{\alpha \mu \beta \nu} U^{\mu} U^{\nu}$ and magnetic $\mathcal{H}_{\alpha \beta} \equiv \star C_{\alpha \mu \beta \nu} U^{\mu} U^{\nu}$ parts
- for the Riemann tensor, the conditions for the existence of observers for which $\mathbb{H}_{\alpha \beta}=0$ and $\mathbb{E}_{\alpha \beta}=0$ are not known.
- Riemann invariants do not involve only $\mathbb{E}_{\alpha \beta} \equiv R_{\alpha \mu \beta \nu} U^{\mu} U^{\nu}$ and $\mathbb{H}_{\alpha \beta} \equiv \star R_{\alpha \mu \beta \nu} U^{\mu} U^{\nu}$, but also a third spatial tensor $\mathbb{F}_{\alpha \beta} \equiv \star R \star_{\alpha \mu \beta \nu} U^{\mu} U^{\nu}$
- We only know that $\star \mathbf{R} \cdot \mathbf{R} \neq 0$ implies $\mathbb{H}_{\alpha \beta}$ for all observers since
- $\star \mathbf{R} \cdot \mathbf{R}=\star \mathbf{C} \cdot \mathbf{C}$
- hence $\star \mathbf{C} \cdot \mathbf{C} \neq 0 \Rightarrow \mathcal{H}_{\alpha \beta} \neq 0 \Rightarrow \mathbb{H}_{\alpha \beta} \neq 0$ since $\mathcal{H}_{\alpha \beta}=\mathbb{H}_{[\alpha \beta]}$

Origin of the Invariant structure

"spacetime geometry and the corresponding curvature invariants are affected and determined, not only by mass-energy, but also by mass-energy currents relative to other mass, that is, mass-energy currents not generable nor eliminable by any Lorentz transformation" (Ciufolini-Wheeler 1995)

- But there is no (unambiguous) way of determining relative motion of distant bodies in a curved spacetime (no global notion of parallelism)
- relative motion well defined only when observers/bodies are at the same point
- Definitions of relative velocity have been proposed in the literature; but a direct relation with the curvature invariants seems to be ruled out (notion of relative rest non-transitive, and most non-symmetric)
- We need to do better...

Maxwell equations

$$
\begin{aligned}
\nabla^{\perp} \times \vec{B} & =\dot{\vec{E}}+4 \pi \vec{j} \\
& -\vec{a} \times \vec{B}-\sigma^{\hat{i} \hat{j}} E_{j} \vec{e}_{i}+\frac{2}{3} \theta \vec{E}
\end{aligned}
$$

$$
\nabla^{\perp} \cdot \vec{B}=-2 \vec{\omega} \cdot \vec{E}
$$

Differential Bianchi Identities

$$
\begin{aligned}
& \operatorname{curlH}_{\hat{i j}}=\dot{\varepsilon}_{\hat{i j}}+4 \pi\left[(\rho+p) \sigma_{\hat{i} j}+\nabla \frac{1}{\langle\hat{i}} \hat{j}_{\hat{j}\rangle}+\dot{\pi}_{\hat{i j}}\right] \\
& + \text { contractions of }\left\{\mathcal{E}_{\hat{i} \hat{j}}, \mathcal{H}_{\hat{i} \hat{j}}, J^{\hat{i}}, \pi_{\hat{i j}}\right\} \\
& \text { with }\left\{a_{i}, \omega_{i}, \sigma_{\hat{i} j}, \theta\right\} \\
& \nabla{ }_{\hat{j}}^{\perp} \mathcal{H}_{\hat{i}}^{\hat{i}}=-4 \pi\left[2(\rho+p) \omega_{\hat{i}}+\left(\nabla^{\perp} \times \vec{J}_{\hat{i}}\right]\right. \\
& + \text { contract. of }\left\{\mathcal{E}_{\hat{i} j}, \pi_{i \hat{i} j}\right\} \text { with }\left\{\omega_{\hat{i}}, \sigma_{\hat{i j}}\right\}
\end{aligned}
$$

- Post-Newtonian regime

$$
\begin{gathered}
\operatorname{curl}_{\mathcal{H}_{i j}=\dot{\mathcal{E}}_{i j}+4 \pi J_{\langle i, j\rangle}}^{\mathcal{H}_{i, j}^{j}=-4 \pi(\nabla \times \vec{J})_{i}}
\end{gathered}
$$

- Inertial frame
$\nabla \times \vec{B}=\vec{E}+4 \pi \vec{j}$
$\nabla \cdot \vec{B}=0$
- If an inertial frame exists where $\dot{\vec{E}}+4 \pi \vec{j}=\overrightarrow{0}$ everywhere, then $\vec{B}=0$ globally in that frame $\Rightarrow \vec{E} \cdot \vec{B}=0$ everywhere.
- Ex: system of point charges; if they are all at rest, $\vec{B}=0$.
- Converse is not true.
- In flat spacetime, indeed one can relate the vanishing of $\vec{E} \cdot \vec{B}$ with an absence relative motion between the sources

Maxwell equations

$$
\begin{aligned}
\nabla^{\perp} \times \vec{B} & =\dot{\vec{E}}+4 \pi \vec{j} \\
& \quad-\vec{a} \times \vec{B}-\sigma^{\hat{i} \hat{j}} E_{j} \vec{e}_{i}+\frac{2}{3} \theta \vec{E} \\
\nabla^{\perp} \cdot \vec{B} & =-2 \vec{\omega} \cdot \vec{E}
\end{aligned}
$$

- Inertial frame
$\nabla \times \vec{B}=\dot{\vec{E}}+4 \pi \vec{j}$
$\nabla \cdot \vec{B}=0$

Differential Bianchi Identities

$$
\begin{aligned}
& \operatorname{curl} \mathcal{H}_{\hat{i} \hat{j}}=\dot{\mathcal{E}}_{\hat{i} \hat{j}}+4 \pi\left[(\rho+p) \sigma_{\hat{i} \hat{j}}+\nabla \frac{1}{\langle\hat{i}} J_{\hat{j}\rangle}+\dot{\pi}_{\hat{i} \hat{j}}\right] \\
& + \text { contractions of }\left\{\mathcal{E}_{\hat{i} \hat{j}}, \mathcal{H}_{\hat{i} \hat{j}}, J^{\hat{i}}, \pi_{\hat{i j}}\right\} \\
& \text { with }\left\{a_{i}, \omega_{i}, \sigma_{\hat{i} j}, \theta\right\} \\
& \nabla \stackrel{\perp}{\hat{j}} \mathcal{H}_{\hat{i}}^{\hat{i}}=-4 \pi\left[2(\rho+p) \omega_{\hat{i}}+\left(\nabla^{\perp} \times \vec{J}_{\hat{i}}\right]\right. \\
& + \text { contract. of }\left\{\mathcal{E}_{\hat{i} \hat{j}}, \pi_{i \hat{i}}\right\} \text { with }\left\{\omega_{\hat{i}}, \sigma_{\hat{i} \hat{j}}\right\}
\end{aligned}
$$

- Post-Newtonian regime

$$
\begin{gathered}
\operatorname{curlH}_{i j}=\dot{\mathcal{E}}_{i j}+4 \pi J_{\langle i, j\rangle} \\
\mathcal{H}^{j}{ }_{i, j}=-4 \pi\left(\nabla \times \vec{J}_{i}\right.
\end{gathered}
$$

- If an inertial frame exists where $\overrightarrow{\vec{E}}+4 \pi \vec{j}=\overrightarrow{0}$ everywhere, then $\vec{B}=0$ globally in that frame $\Rightarrow \vec{E} \cdot \vec{B}=0$ everywhere.
- implication above is guaranteed only for inertial frames; in other frames $\omega^{\alpha}, \sigma_{\alpha \beta}, \theta$ contribute as sources for \vec{B}.
- Ex: system of charges in rigid rotational motion; they are at rest in the co-rotating frame, yet $\vec{B} \neq 0$ and $\vec{B} \cdot \vec{E} \neq 0$.

Maxwell equations

$$
\begin{aligned}
\nabla^{\perp} \times \vec{B} & =\dot{\vec{E}}+4 \pi \vec{j} \\
& \quad-\vec{a} \times \vec{B}-\sigma^{\hat{i} j} E_{\hat{j}} \vec{e}_{i}+\frac{2}{3} \theta \vec{E}
\end{aligned}
$$

$\nabla^{\perp} \cdot \vec{B}=-2 \vec{\omega} \cdot \vec{E}$

- Inertial frame
$\nabla \times \vec{B}=\dot{\vec{E}}+4 \pi \vec{j}$
$\nabla \cdot \vec{B}=0$

Differential Bianchi Identities

$$
\begin{aligned}
\operatorname{curl} \mathcal{H}_{\hat{i j}} & =\dot{\mathcal{E}}_{\hat{i} j}+4 \pi\left[(\rho+p) \sigma_{\hat{i j}}+\nabla_{\left\langle\frac{1}{i}\right.}^{\perp} J_{\hat{j}\rangle}+\dot{\pi}_{\hat{i j}}\right] \\
& + \text { contractions of }\left\{\mathcal{E}_{\hat{i} \hat{i}}, \mathcal{H}_{\hat{i} \hat{i}}, J^{\hat{i}}, \pi_{\hat{i j}}\right\} \\
& \text { with }\left\{a_{\hat{i}}, \omega_{\hat{i}}, \sigma_{\hat{i} \hat{j}}, \theta\right\} \\
\nabla_{\hat{j}}^{\perp} \mathcal{H}_{\hat{i}}^{\hat{i}} & =-4 \pi\left[2(\rho+p) \omega_{\hat{i}}+\left(\nabla^{\perp} \times \vec{J}\right)_{\hat{i}}\right] \\
& + \text { contract. of }\left\{\mathcal{E}_{\hat{i} \hat{j}}, \pi_{\hat{i j}}\right\} \text { with }\left\{\omega_{\hat{i}}, \sigma_{\hat{i j}}\right\}
\end{aligned}
$$

- Post-Newtonian regime

$$
\begin{gathered}
\operatorname{curlH}_{i j}=\dot{\mathcal{E}}_{i j}+4 \pi J_{\langle i, j\rangle} \\
\mathcal{H}_{i, j}^{j}=-4 \pi(\nabla \times \vec{J})_{i}
\end{gathered}
$$

- Similar statements for gravity, replacing:
- B^{α} by $\mathcal{H}_{\alpha \beta} / \mathbb{H}_{\alpha \beta}$
- $\star \mathbf{F} \cdot \mathbf{F}$ by $\star \mathbf{R} \cdot \mathbf{R}$
- inertial frames by Post-Newtonian frames
- Relation between $\star \mathbf{R} \cdot \mathbf{R}$ and the relative motion of the sources recovered at 1PN order (and PN frames)

Point charge vs Schwarzschild solution

Point charge: $\left\{\begin{array}{l}\vec{E}^{2}-\vec{B}^{2}=\frac{q^{2}}{r^{4}}>0 \\ \vec{E} \cdot \vec{B}=0 \text { (everywhere) }\end{array}\right.$
\Rightarrow Everywhere there is as class of observers for which $\vec{B}=0$

- static observers, and observers moving radially (as the component $\vec{v}_{\| E}$ along \vec{E} is arbitrary)

Schwarzschild (Petrov type D): $\left\{\begin{array}{c}\mathbb{E}^{\alpha \gamma} \mathbb{E}_{\alpha \gamma}-\mathbb{H}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma}=\frac{6 m^{2}}{r^{6}}>0 \\ \mathbb{E}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma}=0 \text { (everywhere) }\end{array}\right.$

- Everywhere there is as class of observers for which $\mathbb{H}_{\alpha \gamma}=0$ \Rightarrow static observers (outside the horizon), and observers moving radially, just like in electromagnetism

Two charges

$$
\begin{gathered}
\vec{v}_{1} \\
\vec{E} \cdot \vec{B} \simeq \frac{Q_{1} Q_{2}}{r_{1}^{3} r_{2}^{3}}\left[\left(\overrightarrow{v_{1}} \times \overrightarrow{r_{1}}\right) \cdot \overrightarrow{r_{2}}+\left(\overrightarrow{v_{2}} \times \overrightarrow{r_{2}}\right) \cdot \vec{r}_{1}\right] \quad(\neq 0 \text { generically })
\end{gathered}
$$

- Generically, the magnetic field does not vanish for any observer
- consistent with the fact that there is no inertial frame where both charges are at rest
- but if the motion is coplanar, $\vec{E} \cdot \vec{B}=0$ in the plane of the motion
- at every point in the plane there are observers for which $\vec{B}=0$

circular motion; $\vec{v}_{1}=-\vec{v}_{2}$

Two charges -

$$
\left\{\begin{array}{c}
\vec{E} \cdot \vec{B}=0 \text { in the plane of } \\
\text { the motion } \\
\vec{E} \cdot \vec{B} \neq 0 \text { elsewhere }
\end{array}\right.
$$

- For the static observer \mathcal{O} at $P, \vec{B}=\vec{B}_{1}+\vec{B}_{2} \neq 0$ because $\left|\vec{B}_{2}\right|>\left|\vec{B}_{1}\right|$ (since particle 2 is closer to P)
- By moving with 3 -velocity \vec{v} in the same direction as particle 2 , observer \mathcal{O}^{\prime} decreases its relative velocity to particle 2 , and increases its relative velocity to particle 1
- That means decreasing $\left|\overrightarrow{B^{\prime}}{ }_{2}\right|$ whilst increasing $\left|\vec{B}_{1}^{\prime}\right|$; they cancel out $\left(\vec{B}^{\prime}=0\right)$ for $v \simeq 2 v d / r$

Spinning Charge

$$
\left\{\begin{array}{l}
\vec{E}^{2}-\vec{B}^{2}=\frac{q^{2}}{r^{4}}-\frac{\mu^{2}(5+3 \cos 2 \theta)}{2 r^{6}}>0 \\
\vec{E} \cdot \vec{B}=\frac{2 \mu q \cos \theta}{r^{5}}
\end{array}\right.
$$

- $\vec{E} \cdot \vec{B}=0$ in the equatorial plane, $\neq 0$ elsewhere
- In the equatorial plane there are observers for which $\vec{B}^{\prime}=0$;
- $\vec{B}^{\prime} \neq 0$ elsewhere for every observer

Spinning Charge

- $\vec{E} \cdot \vec{B}=0$ in the equatorial plane, $\neq 0$ elsewhere
- In the equatorial plane there are observers for which $\vec{B}^{\prime}=0$;
- $\vec{B}^{\prime} \neq 0$ elsewhere for every observer
- explained by the same reasoning as the system of two charges (rotating body may the cast as an assembly of pairs of elements in antipodal positions)
- the velocities asymptotically match up to a factor of 2
- congruence of observers for which $\vec{B}^{\prime}=0$ is a shearing one (besides rotating)

Gravitational 2 body system: Earth $\equiv \oplus$; Sun $\equiv \odot$

$$
\left\{\begin{array}{l}
\mathbf{R} \cdot \mathbf{R}>0 \\
\star \mathbf{R} \cdot \mathbf{R}=0 \text { in the } \\
\quad \text { orbital plane } \\
\star \mathbf{R} \cdot \mathbf{R} \neq 0 \text { elsewhere }
\end{array}\right.
$$

Post-Newtonian (1PN) metric, equatorial plane

- Off the Earth-Sun axis, at any point there is an unique observer for which $\mathbb{H}_{\alpha \beta}^{\prime}=0$ (similar to Petrov type I)
- On the axis, is similar to Petrov type D, and electromagnetism:
- \vec{v} has a component parallel to the super-Poynting vector $\overrightarrow{\mathcal{P}}$:

$$
v \stackrel{r \gg r \odot \oplus}{\simeq} \frac{3 J}{M_{\odot} r}
$$

which asymptotically differs by a factor of $3 / 2$ from the electromagnetic analogue

- and has an arbitrary component along the axis

Kerr, not too close to the horizon

$\prime 2$

- In the equatorial plane there are observers for which $\mathbb{H}_{\alpha \beta}^{\prime}=0$, elsewhere $\mathbb{H}_{\alpha \beta}^{\prime}=0$ for all observers
- Similar to the orbital plane two body system
- contradicts the (invariant based) claim that gravitomagnetic effects arising in the Earth-Sun system are of different nature

Kerr, not too close to the horizon

- In the equatorial plane there are observers for which $\mathbb{H}_{\alpha \beta}^{\prime}=0$, elsewhere $\mathbb{H}_{\alpha \beta}^{\prime}=0$ for all observers
- Similarly to the orbital plane two body system
- contradicts the (invariant based) claim that gravitomagnetic effects arising in the Earth-Sun system are of different nature
- For $r \rightarrow \infty$, the velocity of the observers measuring $\mathbb{H}_{\alpha \beta}^{\prime}=0$ matches the electromagnetic counterpart up to a factor of 2

Kerr black hole

Half-plane $\theta \leq \pi / 2$

- The electromagnetic analogy holds until very close to the horizon
- Inside the black holes there are both regions of electric ($\mathbf{R} \cdot \mathbf{R}>0$) and magnetic ($\mathbf{R} \cdot \mathbf{R}<0$) dominance
- for sufficiently large a, they may lie partly inside the horizon
- There are purely electric and purely magnetic shells, where $\star \mathbf{R} \cdot \mathbf{R}=0$ observers exist for which $\mathbb{H}^{\prime \alpha \beta}=0$ or $\mathbb{E}^{\prime \alpha \beta}=0$

Curvature Invariants and the gravitomagnetic effects

So far we have:

- understood the algebraic implications of the invariants
- explained the invariant structure of the systems under discussion

The remaining question:

- what are the implications for the motion of test particles?

Purely formal analogy $\left\{E^{\alpha}, B^{\alpha}\right\} \leftrightarrow\left\{\mathbb{E}^{\alpha \beta}, \mathbb{H}^{\alpha \beta}\right\}$

- Gravitational tidal tensors $\left\{\mathbb{E}_{\alpha \beta}, \mathbb{H}_{\alpha \beta}\right\}$ are dynamically analogous to the electromagnetic tidal tensors $\left\{E_{\alpha \beta}, B_{\alpha \beta}\right\}$
- not to the electromagnetic fields $\left\{E^{\alpha}, B^{\alpha}\right\}$
- effects can be opposite

- No Larmor precession:

$$
\vec{B}=0 \Rightarrow \frac{D \vec{S}}{d \tau}=0
$$

- There is a Force applied:

$$
F_{E M}^{\alpha}=B^{\beta \alpha} \mu_{\beta} \neq 0
$$

- Gyroscope precesses:

$$
\frac{d \vec{S}}{d \tau} \neq 0
$$

- No Force on Gyroscope:
$\mathbb{H}_{\alpha \beta}=0 \Rightarrow F_{\mathrm{G}}^{\alpha}=-\mathbb{H}^{\beta \alpha} S_{\beta}=0$

GEM inertial fields vs GEM tidal tensors

The objects that play in gravity a role analogous to the electromagnetic fields $\left\{E^{\alpha}, B^{\alpha}\right\}$ are the gravitoelectric field G^{α} and the gravitomagnetic field H^{α}

- Geodesic equation: $\frac{\tilde{D} \vec{U}}{d \tau}=\gamma\left[\gamma \vec{G}+\vec{U} \times \vec{H}-\sigma^{\hat{i}}{ }_{j} U^{j} \mathbf{e}_{\hat{i}}-\frac{1}{3} \theta \vec{U}\right]$
- Gyroscope precession $\frac{d \vec{S}}{d \tau}=\frac{1}{2} \vec{S} \times \vec{H}$
- These are inertial fields:
- $G^{\alpha}=-\nabla_{\mathbf{u}} u^{\alpha}$ is minus the observer's acceleration
- $H^{\alpha}=2 \omega^{\alpha}$ is twice their vorticity
- $H^{\alpha}\left(\right.$ not $\left.\mathbb{H}_{\alpha \beta}\right)$ is involved in the effects under experimental scrutiny

GEM inertial fields vs GEM tidal tensors

The objects that play in gravity a role analogous to the electromagnetic fields $\left\{E^{\alpha}, B^{\alpha}\right\}$ are the gravitoelectric field G^{α} and the gravitomagnetic field H^{α}

- Geodesic equation: $\frac{\tilde{D} \vec{U}}{d \tau}=\gamma\left[\gamma \vec{G}+\vec{U} \times \vec{H}-\sigma^{\hat{i}}{ }_{j} U^{j} \mathbf{e}_{i}-\frac{1}{3} \theta \vec{U}\right]$
- Gyroscope precession $\frac{d \vec{S}}{d \tau}=\frac{1}{2} \vec{S} \times \vec{H}$
- These are inertial fields:
- $G^{\alpha}=-\nabla_{\mathbf{u}} u^{\alpha}$ is minus the observer's acceleration
- $H^{\alpha}=2 \omega^{\alpha}$ is twice their vorticity
- $H^{\alpha}\left(\right.$ not $\left.\mathbb{H}_{\alpha \beta}\right)$ is involved in the effects under experimental scrutiny
- relation between the two complicated in general; at 1PN

$$
\begin{aligned}
\mathbb{E}_{i j} & =-\nabla_{j} G_{i}+G_{i} G_{j}+\frac{1}{2} \epsilon_{i j k} \frac{\partial H^{k}}{\partial t}-\frac{\partial^{2} U}{\partial t^{2}} \delta_{i j} \\
\mathbb{H}_{i j} & =-\frac{1}{2} \nabla_{j} H_{i}-\epsilon_{i j k} \frac{\partial G^{k}}{\partial t}
\end{aligned}
$$

- linear terms of $\left\{\mathbb{E}_{\alpha \beta}, \mathbb{H}_{\alpha \beta}\right\}$ are one order higher in differentiation compared to $\left\{G^{\alpha}, H^{\alpha}\right\}$

Pedagogical example - the Godel universe

$$
d s^{2}=-\left(d t+\mathcal{A}_{i} d x^{i}\right)^{2}+h_{i j} d x^{i} d x^{j}
$$

$$
\begin{aligned}
& \mathcal{A}_{i} d x^{i}=-e^{\sqrt{2} \omega x} d y \\
& h_{i j} d x^{i} d x^{j}=d x^{2}+\frac{1}{2} e^{2 \sqrt{2} \omega x} d y^{2}+d z^{2}
\end{aligned}
$$

- $\mathbb{E}^{\alpha \gamma} \mathbb{H}_{\alpha \gamma}=\star \mathbf{R} \cdot \mathbf{R}=0$ everywhere;
- with respect to the rest observers $u^{\alpha}=\delta_{0}^{\alpha}$ (rigid congruence):

GEM inertial fields

$$
\begin{array}{ll}
\vec{G}=0 & \mathbb{E}_{\alpha \beta} \neq 0 \\
\vec{H} \neq 0 & \mathbb{H}_{\alpha \beta}=0
\end{array}
$$

GEM tidal tensors

- From the point of view of the curvature it is purely electric \Rightarrow gyroscopes feel no force: $F_{\mathrm{G}}^{\alpha}=-\mathbb{H}^{\beta \alpha} S_{\beta}=0$
- From the point of GEM inertial fields, it is purely magnetic
- gyroscopes precess $d \vec{S} / d t=\vec{S} \times \vec{H} / 2$
- It is impossible to find a rigid frame where $\vec{H}=0$ (no rigid, vorticity-free observer congruences exist)
- i.e., no rigid frame where Coriolis forces vanish, and gyroscopes do not precess (only at a point)

What the invariants say about GEM inertial fields

The invariants are built on the GEM tidal tensors $\mathbb{E}_{\alpha \beta}, \mathbb{H}_{\alpha \beta}$; it is about them that they tell us directly.
Exception is the case of Petrov type D vacua

- When $\mathbf{R} \cdot \mathbf{R}>0, \star \mathbf{R} \cdot \mathbf{R}$ (purely electric condition) holds in a open 4D spacetime region, then in that region observer congruences without shear $\left(\sigma_{\alpha \beta}=0\right)$ and vorticity ($\omega^{\alpha}=0$) exist (Wylleman-Beke 2010).
- i.e., reference frames exist relative to which frame-dragging is well defined, and $H^{\alpha}=2 \omega^{\alpha}=0$
- This distinguishes Schwarzschild from Kerr:
- in Schwarzschild shear-free congruences exist relative to which $H^{\alpha}=0$, e.g. the static observers
- in Kerr $H^{\alpha} \neq 0$ in any shear-free frame
- But is it only for Petrov type D, so does not apply to the 2-body systems
- and it is only for open 4D regions, hence does not even apply to the discussion of the purely electric equatorial plane of Kerr

Conclusion

- We clarified the algebraic meaning of the invariants as yielding conditions for the existence of observers vanishing of the electric/magnetic parts of \mathbf{F} and \mathbf{R}, and constructed explicitly their velocities
- we were able to understand the invariant structure of the astrophysical setups of interest, on which the electromagnetic analogy gives valuable insight
- claims that the field invariants of a rotating and two translating sources are substantially different are unfounded
- we dissected the implications in the motion of test particles (caution with the electromagnetic analogies!)
- The use of scalar invariants to discuss the Lense-Thirring and inertial force effects is essentially misguided.
- Generically, curvature invariants do not tell us about the gravitomagnetic H^{α} itself;
- Curvature invariants tell about the gravitomagnetic tidal field $\mathbb{H}_{\alpha \beta}$ (magnetic curvature)
- Appropriate probe to measure magnetic curvature (intrinsic or extrinsic) is the force (not the precession) on a gyroscope

围 L．F．Costa，J．Natario，L．Wylleman（to appear soon）
围 I．Ciufolini，J．A．Wheeler，＂Gravitation and Inertia，＂Princeton Series in Physics（1995）
R I．Ciufolini，New Astronomy 15 （2010） 332
（ T．Murphy Jr．，K．Nordtvedt，S．Turyshev，PRL 98 （2007） 071102
國 Soffel et al，Phys．Rev．D 78 （2008） 024033
目 I．Ciufolini，E．Pavlis，Nature 431 （2004）958；
囯 Louis Bel，C．R．Acad．Sci．Paris Ser．IV 246 （1958） 3015
围 L．F．Costa，J．Natário，GRG 46 （2014） 1792
國 L．F．Costa，C．A．R．Herdeiro，Phys．Rev．D 78024021 （2008）
嗇 L．Wylleman，N．Van Bergh，Phys．Rev．D 74084001 （2006）
（inclntosh et al，Class．Quant．Grav． 11 （1994） 1555
围 Thank you

