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Coordinate conditions or 
restrictions

• In “Autobiographical Notes”, Einstein points out that the 
importance of the EP in requiring a generalisation of SR was 
clear to him in 1908 (actually it was in 1907).  
 
And he adds: “Why were another seven (eight) years required 
for the construction of the general theory of relativity? The main 
reason lies in the fact that it is not so easy to free oneself from 
the idea that co-ordinates must have an immediate physical 
meaning.”  
(Einstein 1949, p.67).

• It was exactly the resolution of this puzzle that separated 
Einstein from the final theory particularly from 1913 to 1915.



From the special to the 
general theory

• Einstein saw his work on general relativity as something quite 
unique in his life. 

• He felt that if he had not created the special theory of relativity, 
someone else would have done so (P. Langevin?).

• His approach to a new theory of gravitation was entirely his own, 
carried through with considerable hard work and facing 
scepticism, if not active opposition, from physicists he respected 
(Max Planck or Max Abraham).

• He characterised his efforts on special relativity as mere child’s 
play compared to what was needed to complete general relativity.



Einstein comes to Zurich
• It took some time for Einstein to embrace Minkowski’s reformulation of 

special relativity in terms of a 4-dimensional space-time manifold, a 
crucial instrument for the further development of a relativistic theory of 
gravitation. As late as July 1912, Einstein had not adopted the 4-
dimensional geometrical approach of Minkowski. 

• Apparently, Einstein became acquainted with Minkowski’s formalism 
through M. Laue’s book (Laue 1911). All this changed with Einstein’s 
move to Zurich in August 1912 where he began collaborating with 
his old mate Marcel Grossmann. Einstein was then introduced by 
Grossmann to the ‘absolute differential calculus of Ricci and Levi-
Civita.

• There we find Einstein recounting the elements of the four-dimensional 
approach to relativity and Minkowski’s electrodynamics, starting with 
four space-time coordinates (x, y, z, ict) = (x1, x2, x3, x4) and going on 
through scalars, four-vectors and six-vectors and their operations.



The Zurich Notebook
• The task of a reconstruction of Einstein’s building of the theory of 

GR has challenged several historians of science for a long time.

• A major step forward in this venture is due to John Stachel’s and 
John Norton’s groundbreaking investigations.

• A very important interpretative tool for understanding Einstein’s 
search for the gravitational field equations is the so-called 
Einstein’s Zurich Notebook, a document written between 
Summer 1912 and Spring 1913, during his time in Zurich 
(Stachel 1980). 

• A little later, John Norton also published a comprehensive 
reconstruction of Einstein’s discovery process (Norton 1984). 



A systematic analysis of the 
Zurich notebook

• A group of scholars, including John Stachel, John D. Norton and 
Jürgen Renn and his group at the MPI, undertook a systematic 
analysis of this notebook and revealed an unexpected result: 
Einstein had written down, in 1912, an approximation to his final 
field equations of gravitation, which were derived by him in 1915.

• In 1997, Jürgen Renn and Tilman Sauer have shown that the 
clarification reached by deciphering Einstein’s research notes would 
have serious consequences for our understanding of the genesis of 
GR: the Zurich Notebook shows that in1912-1913 “Einstein had 
already come within a hair’s breadth of the final GTR”.

• However, he failed to recognise the physical meaning of his 
mathematical results. In any case, the period between 1913 and 
November 1915 should not be considered as a period of stagnation. 
It was, rather, a period during which Einstein arrived at a number of 
insights that created the prerequisites for his final triumph.



ZN originally comprised 96 pages. If we flip it over, we find a second cover with the 
word “Relativität” in Einstein’s handwriting. 
The turning point in the history of Einstein’s discovery of the gravitational field 
equations was when he realised the significance of the metric tensor…



The page 39L of ZN
• But let’s go back to the ZN pages where Einstein was starting to deal with 

Minkowski’s approach. A central element of Minkowski’s geometrical 
representation of SR was the manifest invariance under linear, orthogonal 
transformations of the quantity 

• The development continues for 13 pages, recounting notions in electrodynamics 
and thermal physics. All of a sudden we stumble on the basic notion of GR, the 
“line element”, written at the top of page 39L, the first exploration of a metric 
theory. This was possibly the first time Einstein had written down this expression. 
The coefficients        of what we now know as the “metric tensor" are written with 
an uppercase G. 

• Einstein changed within a few pages to a lowercase g, which remained his 
standard notation from then on, 

ds2 = −c2dt 2 + dx2 + dy2 + dz2

Gµν

ds2 = gαβdx
αdxβ

α ,β=1

4

∑



The Equivalence Principle
• For Einstein, the big project was to find how gμν, the metric tensor, is generated by 

sources (masses or fields). This would lead to the new gravitational field equation, 
that is, Einstein’s analogue of Newton’s inverse square law of gravity. The lower 
half of the ZN’s page is clearly making rudimentary efforts in that direction.

• Let’s recall the principal steps taken by Einstein in his path towards a new theory 
of gravitation. In 1907, Einstein, still at the patent office in Bern, discovered a 
practical way to deal with gravity and with accelerated observers. He realised then 
that the effects of acceleration were indistinguishable from the effects of gravity. 

• Somehow, Einstein succeeded in unifying all kinds of motion. Uniform motion is 
indistinguishable from rest and acceleration is no different from being at rest in a 
gravitational field, at least locally. Einstein saw this “Generalised Principle of 
Relativity” as guaranteeing the satisfaction of the Equivalence Principle (EP).

• As early as 1907, he had come to consider two possible physical consequences of 
the EP: the bending of light in a gravitational field and the gravitational red-shift.



Generalised PR versus GC
• That is, the equivalence principle extends the covariance of special relativity 

beyond Lorentz covariance but not as far as general covariance. Only later 
did Einstein formulate a “Generalized Principle of Relativity” which would be 
satisfied if the field equation of the new theory could be shown to possess 
general covariance. But Einstein’s story, appealing to this mathematical 
property, is full of ups and downs.

• The turning point in the history of Einstein’s discovery of the gravitational 
field equations was in the early summer of 1912, when he realised the 
significance of the metric tensor and the general line element for a 
generalized theory of gravitation (Pais 1982, section 12b, and Stachel 1980).

• Then Einstein started to study the mathematics of Gaussian surface theory, 
in collaboration with Grossmann, who discovered for Einstein the existence 
of the “absolute differential calculus” of Ricci and Levi-Civita (1901) that 
would enable Einstein to construct a generally covariant theory of gravitation.



Einstein, The Meaning of Relativity, 
Appendix to 5th ed. (1955)

• The development … of the mathematical theories, essential 
for the setting up of general relativity, had the result that at 
first the Riemannian metric [chrono-geometry] was 
considered the fundamental concept on which the general 
theory of relativity and thus the avoidance of the inertial 
system were based. 

• Later, however, Levi-Civita rightly pointed out that the 
element of the theory that makes it possible to avoid the 
inertial system is rather the infinitesimal displacement field 
Γmik [the inertio-gravitational field]. The metric or the 
symmetric tensor field gik which defines it is only 
indirectly connected with the avoidance of the inertial 
system in so far as it determines a displacement field.



The “Entwurf” theory
• However, when Einstein & Grossmann published the results of their own 

research (early 1913), the theory of the resulting paper, known as the 
“Entwurf” (outline or draft) theory from the title of the paper, failed to 
comply with the generalized principle of relativity, since this theory 
offered a set of gravitational field equations that was not generally 
covariant.

• Until the Autumn of 1915, Einstein continued to elaborate on and 
improve the “Entwurf” theory and explored many of its consequences. 
Already in 1913, Einstein and his friend Michele Besso had found that 
“Entwurf” equations did not account for the anomalous advance of 
the perihelion of Mercury, something that Einstein hoped to explain. 

• Although Einstein knew the failure of its “Entwurf” theory to resolve the 
Mercury anomaly, he continued to hold on to this theory in spite of 
everything.



At the top of this particular 
page, 22R, Einstein wrote down 
the generally covariant Ricci 
tensor Til under the heading 
“Grossmann,” “If G is a 
scalar” (unimodular trans-
formations) Einstein noted, the 
first half of Til transforms as 
a tensor. If the first half 
transforms as a tensor under 
unimodular transformations, the 
second half must too, 
since their sum transforms as a 
tensor under arbitrary 
transformations.  

Underneath the second half of 
the second equation, Einstein 
wrote, “probable gravitation 
tensor”



• In his paper of 4 November 1915, Einstein split up the Ricci tensor 
Gim, which encodes spacetime curvature. (The indices i, l, m, and ρ 
take on the values 1 through 4.) As his new field equations, he 
proposed Rim = −κTim, where Tim is the energy–momentum tensor for 
matter and κ is proportional to Newton’s gravitational constant. 
These are equations of broad but not yet general covariance.



• The Einstein field equations first appear in Einstein’s 25 
November 1915 paper. Here, Gim is the Ricci tensor; gim, the 
metric tensor; and Tim, the energy–momentum tensor for matter. 
Three weeks earlier Einstein had proposed the field equations 
Rim = −κTim which retain their form under unimodular transfs.



The “hole” argument…
• By November 1913, Einstein had developed the “hole” argument against 

general covariance. He wrote to Ludwig Hopf on 2 November:

• “I am now very content with the gravitation theory. The fact that the 
gravitational equations are not generally covariant, which a short time 
ago still disturbed me so much, has proved to be unavoidable; it is 
easily proved that a theory with generally covariant equations 
cannot exist if one demands that the field be mathematically 
completely determined by matter.”

• The proof alluded to in the letter, is the infamous ‘hole’ argument first 
published in the addendum to the “Entwurf” paper (Einstein and 
Grossmann 1913), signed by Einstein alone and not published in the 
original printing of the paper.

• Einstein repeats just about the same argument in two subsequent papers 
in 1914 and in several letters to friends and colleagues, and the core of his 
reasoning was complete by November 1913.



… in action
• Let there be a region of space-time H (the “hole”), an open subspace of a manifold M 

devoid of matter and energy, and a set of generally covariant field equations valid for 
the entire space-time manifold M, both inside and outside H. Given a coordinate 
system of the manifold, K, what happens physically in H is then completely determined 
by the solutions of the field equations, gμν. The totality of these functions will be 
represented by G(x).

• Given a 2nd coordinate system K’  that coincides with K everywhere outside and on 
the boundary of H, and diverges from K within H but in such a way that the metric 
components g’μν referred to K’, like gμν and their derivatives, are everywhere 
continuous. The totality of g’μν expressed in terms of the new coordinates x’ν will also 
be represented by G’(x’). Note that G’(x’) and G(x) describe the same gravitational 
field. That is, they are two different mathematical representations of the same 
physical field.

• However, if we replace the coordinates x’ν by the coordinates xν in the functions g’μν 
and represent them by G’(x) then G’(x) also describes a gravitational field with respect 
to K, which is different from the original gravitational field within the “hole” H. 

• However, the two different solutions G’(x) and G(x), written in the same coordinate 
system, correspond to the same “reality” (e.g. the same sources and same boundary 
conditions).



An equivalent class of 
solutions

• In particular, any set of generally covariant field equations 
that has G(x) as a solution in some empty region of 
space-time will also have G’(x) as a solution in that 
region. G(x) and G’(x), together with all other 
mathematically distinct metric tensor fields that can be 
transformed into each other by being dragged along with 
an (active) diffeomorphism, form a equivalence class of 
solutions. But this equivalence class of mathematical 
distinct metric tensor fields corresponds to one physical 
solution to the field equations, that is, to one gravitational 
field.



Einstein conclusion…
• In summary, because generally covariant field equations admit 

non-equivalent solutions for events within H, such equations 
are not acceptable as an appropriate physical theory of 
gravitation. This is the “hole” argument against general 
covariance of the field equations.

• So, if we require that the course of events in the gravitational 
field be determined by the laws to be set up, we must adopt a 
theory with restricted covariance properties.

• One could think that Einstein’s argument was a sort of excuse 
to accommodate his “Entwurf” theory with limited covariant 
properties. But, indeed, at the end of the day, his argument 
was much deeper than that.



In coordinate-free language
• In trying to explain the line of reasoning behind Einstein’s 

arguments, we kept as close as possible to the mathematical 
language and methods of his time. 

• The modern terminology of differential geometry (coordinate-
free language) which distinguishes between coordinate 
transformations and (active) diffeomorphisms, was not 
available to Einstein, one may easily clarify these arguments. 

• Assume the gravitational field equations are generally 
covariant. Consider a solution of these equations in which the 
gravitational field is g and there is a region H of the universe 
without matter: the “hole”. Assume that inside H there is a 
point A where g is flat and a point B where g is not flat.



in coordinate-free …
• A smooth map φ : M → M which reduces to the identity outside H, and 

such that φ(A) = B, and let                 be the pull-back of g under φ.

• The two fields    and     have the same past and are both solutions of 
the field equations but have different properties at the point A. 
Therefore, the field equations do not determine the physics at the 
space-time point A. That is, they are not deterministic. However, we 
know that (classical) gravitational physics is deterministic.

• So, one must pick one of the following:  
(i) the field equations must not be generally covariant;  
(ii) there is no meaning in talking about the physical space-time point A.  
 
The correct physical conclusion is the second one, that there is 
no meaning in referring to “the event A” without further 
specification.

!g = φ*g

!g g



The point-coincidence argument
• By late 1915, after having returned to generally covariant field equations, 

Einstein introduces the point-coincidence argument: a coordinatization of the 
manifold is itself not sufficient to determine an individuation of the points 
(events) of the manifold.

• Einstein then argues: the events of the space-time are implicitly defined and 
thus individuated only as points of intersection or coincidence of world-lines. 

• In regions where no matter is present, the points of a manifold are physically 
differentiated only by the properties that they inherit from gμν(xν). So, it is 
impossible to have two different sets of values of the functions gμν(xν) 
assigned to one and the same event of the space-time manifold. 

• Therefore, in regions where no matter is present, the points of a manifold 
are physically differentiated only by the properties that they inherit from the 
metric field.



At the end of the day: 
Einstein Got Right

• The Hole Argument: Points of space-
time have no inherent physical 
properties. They inherit all of these 
properties from the space-time 
Structures, including all fields. 

• Conclusion: No first order space-time 
structures or fields, no space-time!  



“Relativity and the Problem 
of Space” (1952)

• On the basis of the general theory of 
relativity ... space as opposed to ‘what fills 
space’ ... has no separate existence.

• If we imagine the gravitational field to be 
removed, there does not remain a space of 
the type [of SR], but absolutely nothing, not 
even a ‘topological space’.



SR versus GR:
GR is a Background-Independent Theory

• The contrast between general relativity and all previous 
theories: 
 
Background-dependent theory: Fixed and given space-time 
stage, on which the drama of physics unfolds, like in 
Minkowski space-time of SR. 
 
Background-independent theory: No actors, no stage, no 
anything. Like GR.

• Einstein put it this way: 
 
“Space-time does not claim existence on its own, but only 
as a structural quality of the field.”



“That’s all folks…” 


