

Extremal charged black holes: Equal absorbers and scatterers of EM and G radiation

Luís Carlos Bassalo Crispino (crispino@ufpa.br)

Universidade Federal do Pará – UFPA

Atsushi Higuchi (University of York), Ednilton Santos de Oliveira (Universidade Federal do Pará), and Samuel Richard Dolan (University of Sheffield).

Summary

Introduction & Basic Concepts

Absorption and Scattering by the Schwarzschild Black Hole

Absorption and Scattering by the Reissner-Nordström Black Hole

Final Remarks

Introduction & Basic Concepts

Absorption and Scattering by Black Holes

(Differential) Scattering cross section

$$\frac{d\sigma_{sc}}{d\Omega} = \frac{\text{number of particles scattered per unit time in the solid angle } d\Omega}{\text{incident flux}}$$

Absorption cross section

$$\sigma_{abs} = rac{ ext{number of absorbed particles per unit time}}{ ext{incident flux}}$$

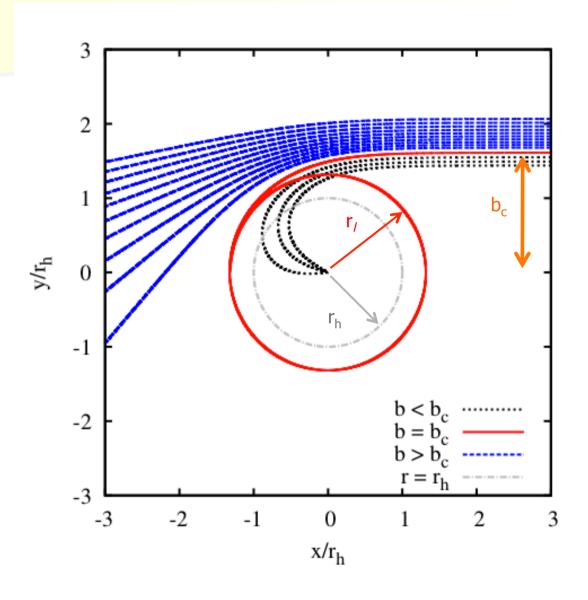
Reissner-Nordström Black Hole

$$ds^{2} = f(r)dt^{2} - f(r)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}),$$
$$f = 1 - 2M/r + Q^{2}/r^{2}$$

- **Q** = **0** → Schwarzschild Black Hole;
- 0 < |Q| < M → Typical Reissner-Nordström Black Hole;
 - | Q | = M → Extreme Reissner-Nordström Black Hole.

Absorption by Schwarzschild black holes

Geodesic (classical) absorption (high-frequency limit)



Geodesic (classical) absorption (high-frequency limit)

$$\theta = \pi/2$$

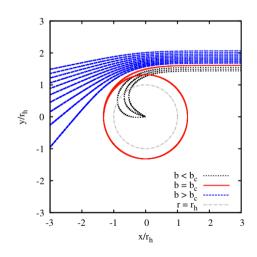
$$2L_{geo} = -f(r)\dot{t} + f(r)\dot{r} + r^2\dot{\varphi}^2 = 0,$$

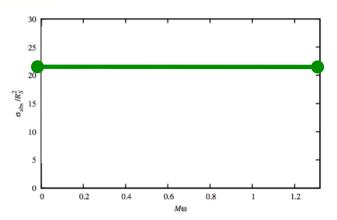
$$\dot{r}^2 + L^2 \frac{f(r)}{r^2} = E^2,$$

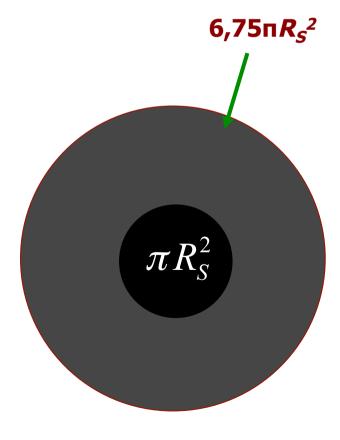
$$V_{\text{eff}} = L^2 f(r)/r^2$$
.

 Geodesic (classical) absorption (high-frequency limit)

$$\sigma_{\text{geo}} = \pi b_c^2 = \pi \frac{r_l^2}{f(r_l)}.$$







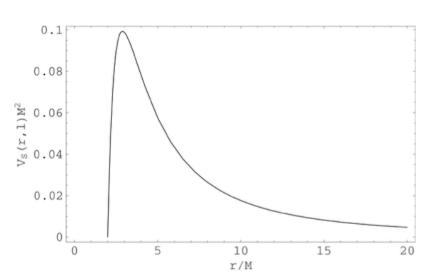
Scalar Absorption Cross Section of Schwarzschild Black Holes

$$\frac{1}{\sqrt{-g}}\partial_a\left(\sqrt{-g}g^{ab}\partial_b\Phi\right) = 0.$$

$$\Phi_{\omega} = \sum_{lm} \frac{\phi(r)}{r} Y_l^m(\theta, \varphi) e^{-i\omega t},$$

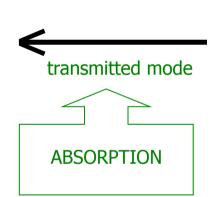
$$\left(-\frac{d}{dx^2} + V_{\phi}(r) - \omega^2\right)\phi(r) = 0,$$

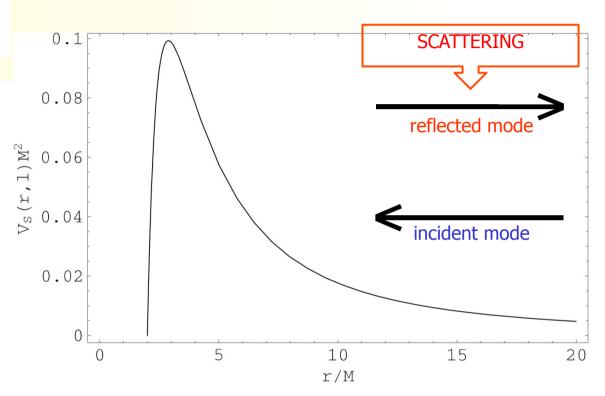
$$V_{\phi}(r) = f\left(rac{l(l+1)}{r^2} + rac{f'}{r}
ight)$$



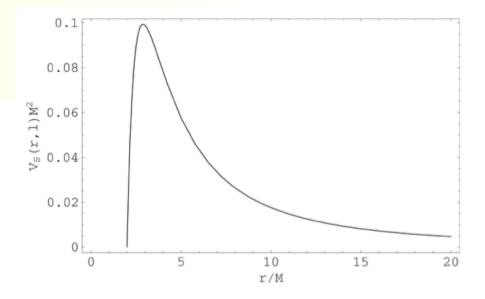
Scalar Absorption Cross Section of Schwarzschild Black Holes

$$V = f\left(\frac{l(l+1)}{r^2} + \frac{f'}{r}\right)$$





$$\psi_{\omega l}(r) \approx \begin{cases} A_{\omega l}^{(tr)} e^{-i\omega x} & (x \to -\infty, r \approx r_h); \\ A_{\omega l}^{(in)} e^{-i\omega x} + A_{\omega l}^{(out)} e^{i\omega x} & (x \to +\infty, r \to \infty). \end{cases}$$



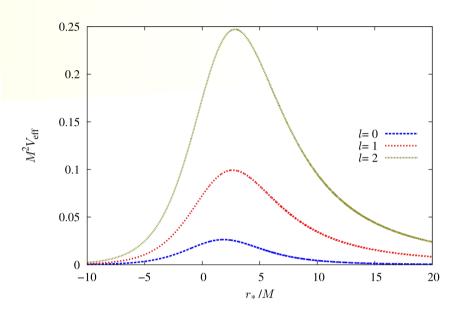
$$\phi^{in}(r) \sim \begin{cases} R_I + \mathcal{R}_{\omega l} R_I^* & x \to +\infty \ (r \to +\infty), \\ \mathcal{T}_{\omega l} R_{II} & x \to -\infty \ (r \to r_h), \end{cases}$$

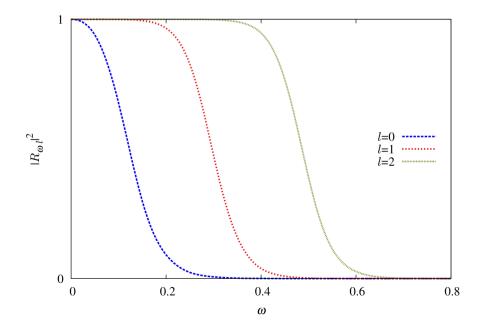
$$|\mathcal{R}_{\omega l}|^2 + |\mathcal{T}_{\omega l}|^2 = 1.$$

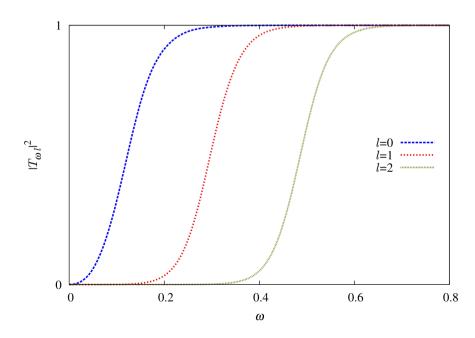
Scalar Absorption Cross Section of Schwarzschild Black Holes

$$\left(-\frac{d}{dx^2} + V_{\phi}(r) - \omega^2\right)\phi(r) = 0,$$

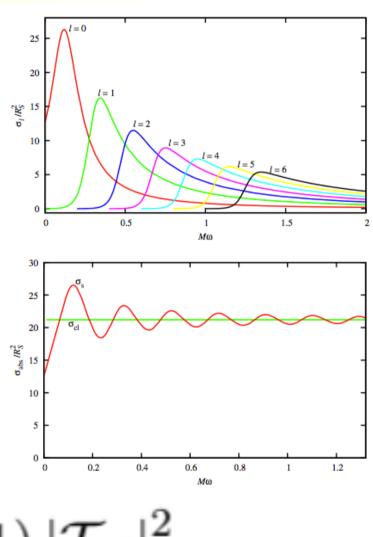
$$|\mathcal{R}_{\omega l}|^2 + |\mathcal{T}_{\omega l}|^2 = 1$$





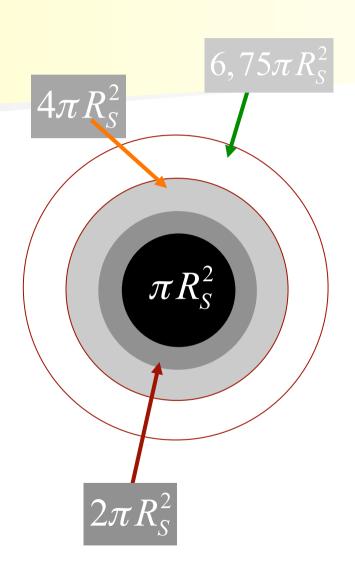


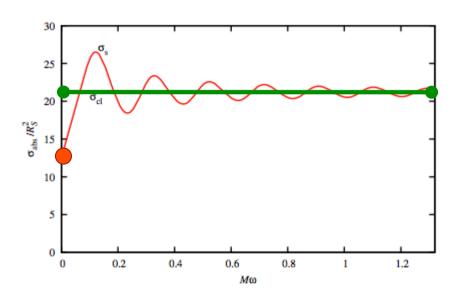
$$\sigma_{abs} = \sum_{l}^{\infty} \sigma_{l},$$

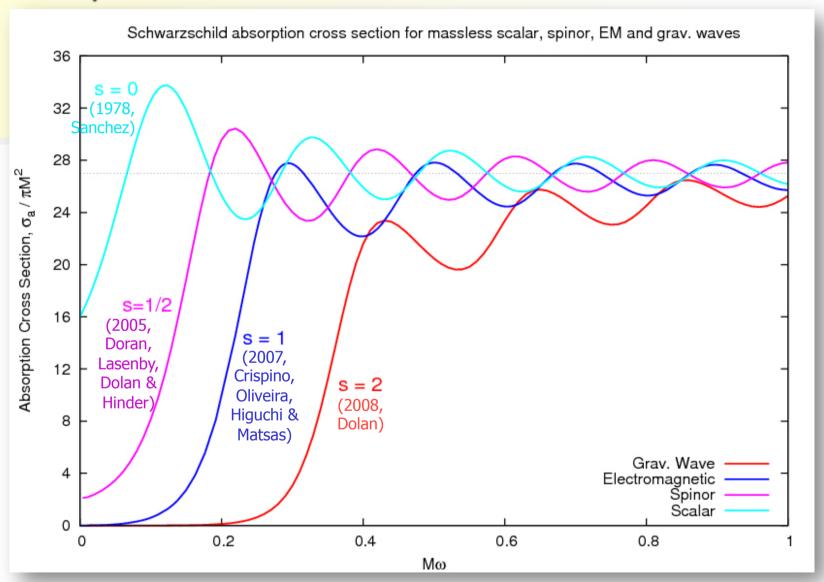


$$\sigma_l = \frac{\pi}{\omega^2} (2l+1) |\mathcal{T}_{\omega l}|^2.$$

Scalar Absorption Cross Section of Schwarzschild Black Holes







Schwarzschild black hole total absorption cross section for massless waves with spin 0, ½, 1 e 2. [Courtesy: Samuel Richard Dolan, 2008.]

Scattering by Schwarzschild black holes

Geodesic (classical) scattering

$$\frac{d\sigma}{d\Omega} = \frac{1}{\sin\Theta} \sum b(\Theta) \left| \frac{db(\Theta)}{d\Theta} \right| \quad \begin{array}{c} 3 \\ 2 \\ 1 \\ \end{array}$$

Geodesic (classical) scattering

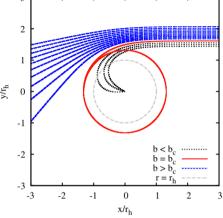
$$\theta = \pi/2$$

$$\left(\frac{du}{d\varphi}\right)^2 = \frac{1}{b^2} - f(1/u)u^2,$$

$$E = -f\dot{t}$$

$$L = r^2 \dot{\varphi}$$

$$\frac{d^2u}{d\varphi^2} = -\frac{u^2}{2}\frac{df(1/u)}{du} - uf(1/u)$$



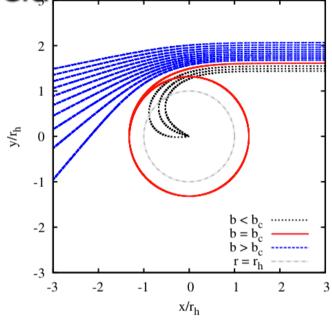
Geodesic (classical) scattering

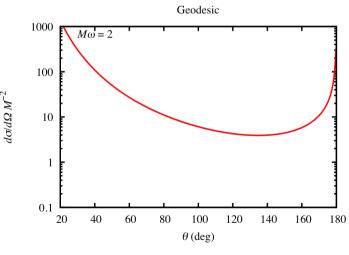
$$\left(\frac{du}{d\varphi}\right)^2 = \frac{1}{b^2} - f(1/u)u^2,$$

$$\alpha = \int_{0}^{u_0} \left[\frac{1}{b^2} - f(1/u)u^2 \right]^{-1/2} du$$

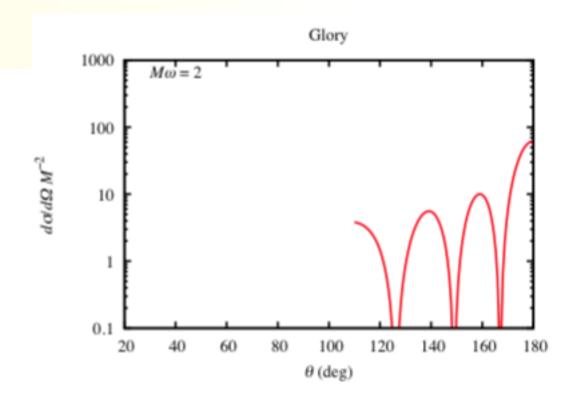
$$\Theta(b) = 2\alpha(b) - \pi$$

$$\frac{d\sigma}{d\Omega} = \frac{1}{\sin\Theta} \sum b(\Theta) \left| \frac{db(\Theta)}{d\Theta} \right|.$$





Glory approximation



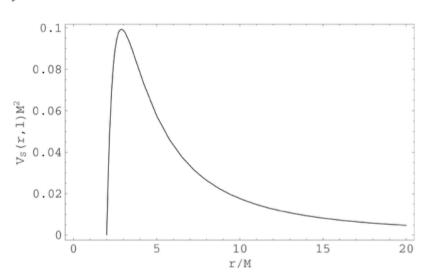
$$\frac{d\sigma_{\rm sc}}{d\Omega} = 2\pi\omega b_g^2 \left| \frac{db}{d\theta} \right|_{\theta=\pi} J_{2s}^2(\omega b_g \sin \theta)$$

$$\frac{1}{\sqrt{-g}}\partial_a\left(\sqrt{-g}g^{ab}\partial_b\Phi\right) = 0.$$

$$\Phi_{\omega} = \sum_{lm} \frac{\phi(r)}{r} Y_l^m(\theta, \varphi) e^{-i\omega t},$$

$$\left(-\frac{d}{dx^2} + V_{\phi}(r) - \omega^2\right)\phi(r) = 0,$$

$$V_{\phi}(r) = f\left(rac{l(l+1)}{r^2} + rac{f'}{r}
ight)$$



$$\phi^{in}(r) \sim \begin{cases} R_I + \mathcal{R}_{\omega l} R_I^* & x \to +\infty \ (r \to +\infty), \\ \mathcal{T}_{\omega l} R_{II} & x \to -\infty \ (r \to r_h), \end{cases}$$

$$R_{I} = e^{-i\omega x} \sum_{i=1}^{N} \frac{A_{\infty}^{j}}{r^{j}},$$

$$R_{II} = e^{-i\omega x} \sum_{i=1}^{N} (r - r_{h})^{j} A_{r_{h}}^{j}$$

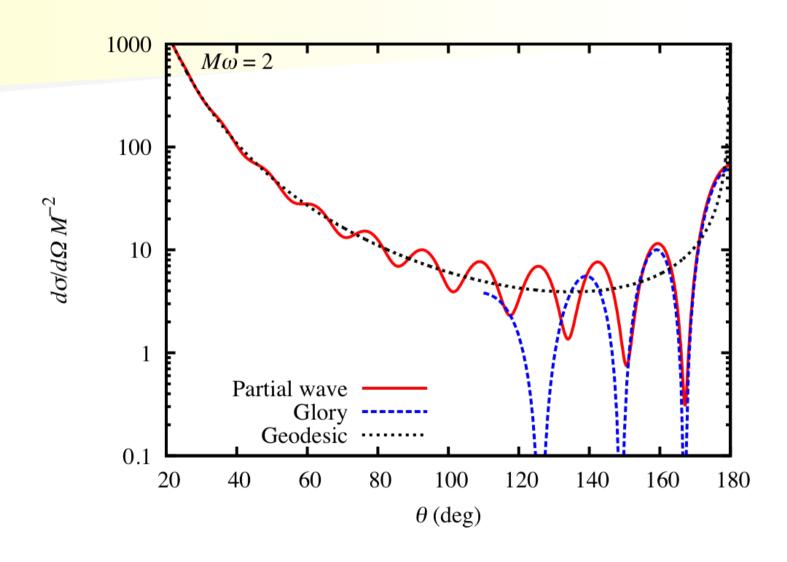
$$\frac{d\sigma}{d\Omega} = |g(\theta)|^2,$$

Partial wave

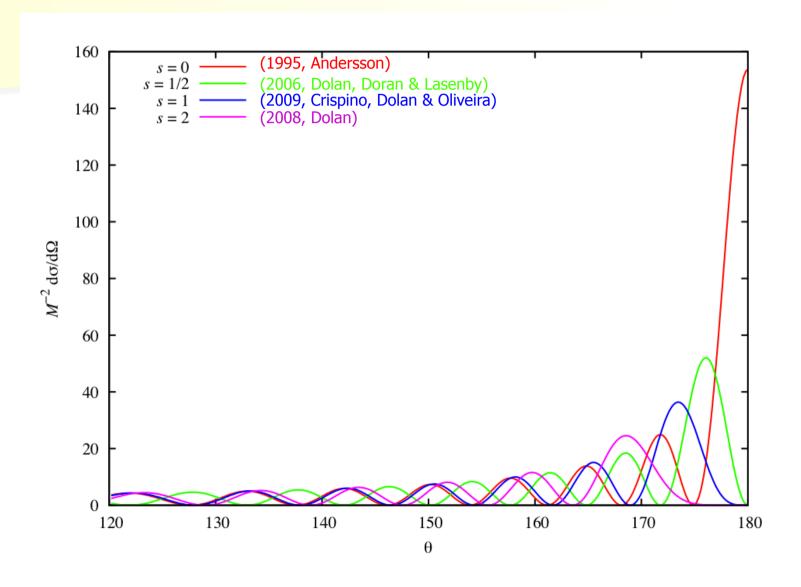
$$1000$$
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100

$$g(\theta) = \frac{1}{2i\omega} \sum_{l=0}^{\infty} (2l+1) \left[e^{2i\delta_l(\omega)} - 1 \right] P_l(\cos \theta),$$

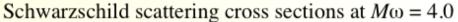
$$e^{2i\delta_l}(\omega) \equiv (-1)^{l+1} \mathcal{R}_{\omega l}.$$

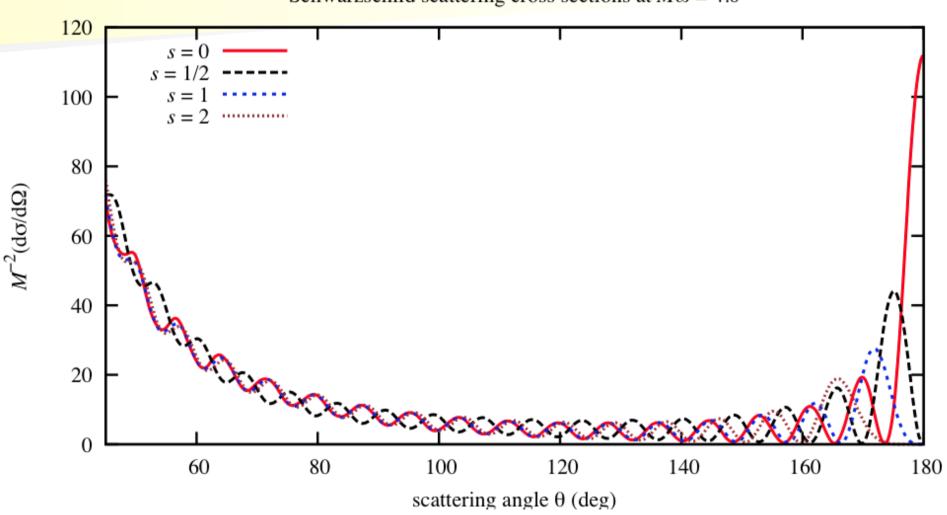


Scattering Cross Section of Schwarzschild Black Holes

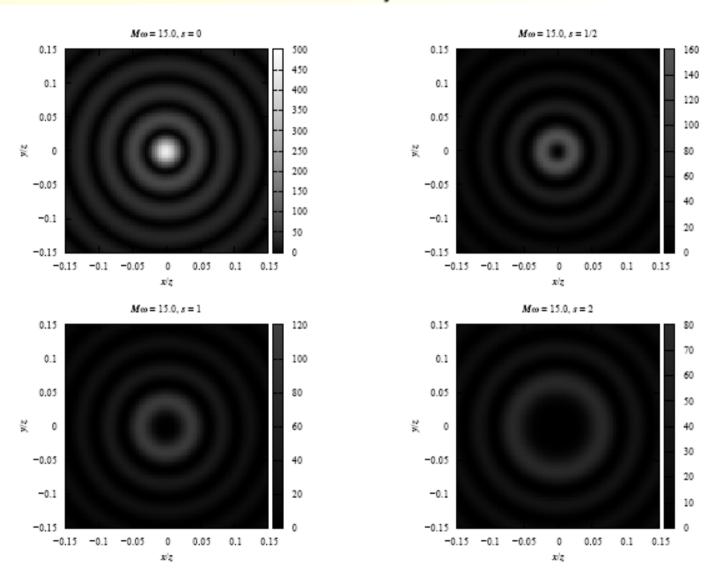


Scattering Cross Section of Schwarzschild Black Holes



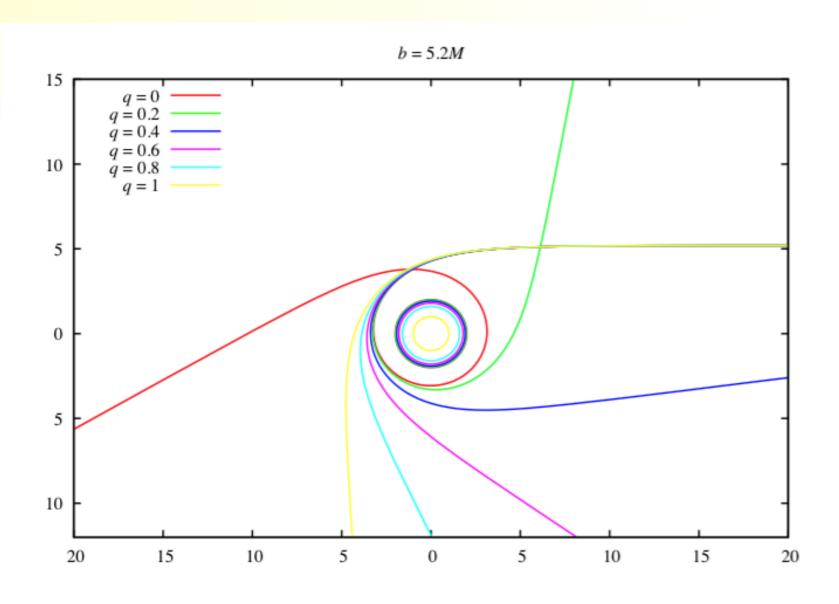


Scattering of Waves by Schwarzschild Black Holes The Glory Effect



Electromagnetic absorption by Reissner-Nordström black holes

Absorption Cross Section of Charged Black Holes



Absorption Cross Section of Charged Black Holes

Wave Equations

Klein-Gordon

$$\Box \Phi = \nabla_{\mu} \nabla^{\mu} \Phi = \frac{1}{\sqrt{-g}} \partial_{\mu} \left(\sqrt{-g} g^{\mu\nu} \partial_{\nu} \Phi \right) = 0.$$

Einstein-Maxwell

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

Absorption Cross Section of Charged Black Holes

Partial Wave Method

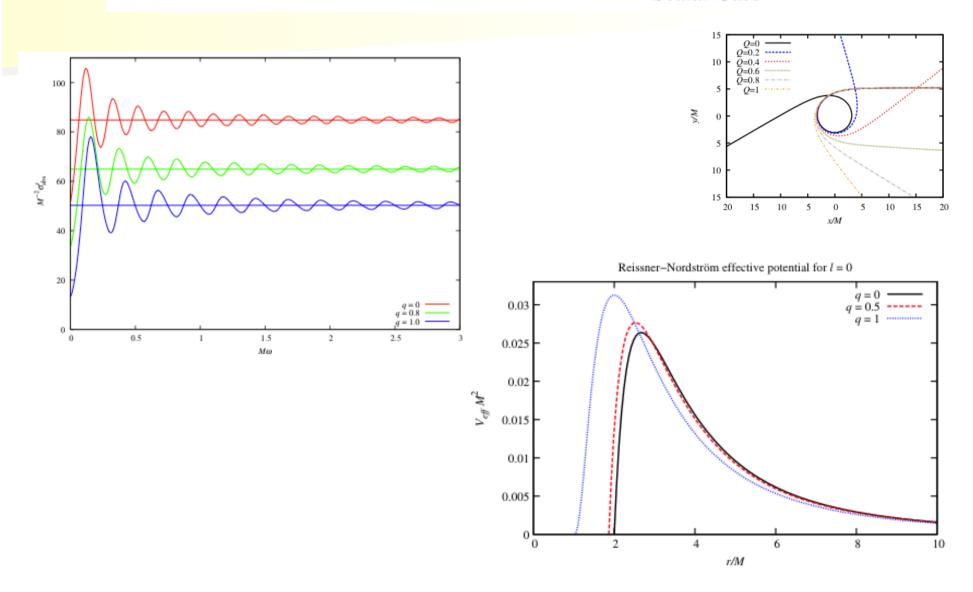
$$\sigma_{abs} \equiv -\frac{\text{integrated net (wave) flux at infinity}}{\text{incident (wave) current density}}$$

$$\sigma_{\text{abs}} = \sum_{l=s}^{\infty} \sigma_{\text{abs}}^{(l)} = \sum_{l=s}^{\infty} \sum_{\lambda} \frac{\pi}{N\omega^2} (2l+1) |T_{\omega l}^{\lambda}|^2$$

Absorption Cross Section of Charged Black Holes [s=0 case]

Absorption Cross Section

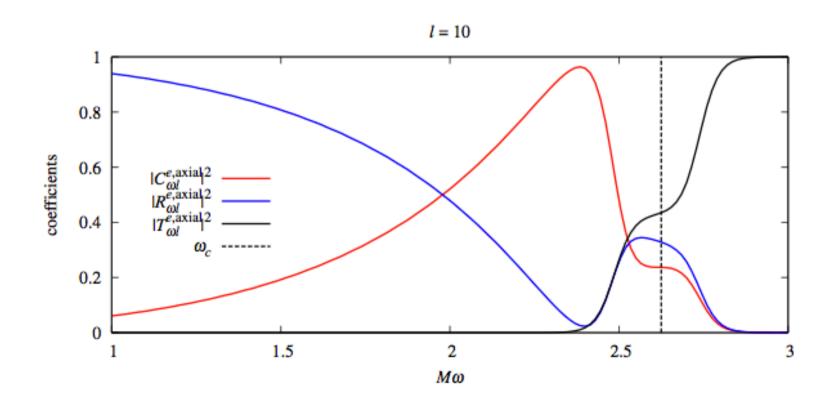
Scalar Case



Absorption Cross Section of Charged Black Holes [s=1,2 cases]

Reflection, Transmission and Conversion Coefficients

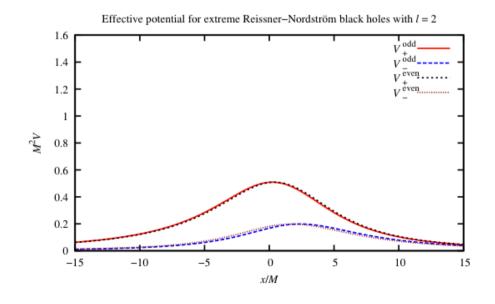
$$|R_{\omega l}^{e,\lambda}|^2 + |T_{\omega l}^{e,\lambda}|^2 + |C_{\omega l}^{e,\lambda}|^2 = 1.$$

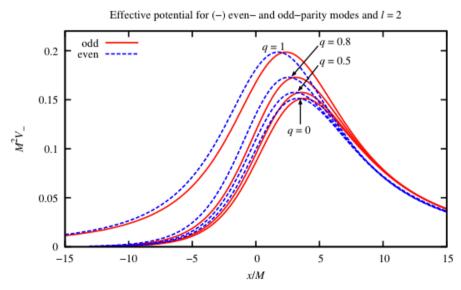


Absorption Cross Section of Charged Black Holes [s=1,2 cases]

Decoupled Equations

$$\frac{d^2}{dr_*^2}\varphi_{\pm}^{\lambda} + \left(\omega^2 - V_{\pm}^{\lambda}\right)\varphi_{\pm}^{\lambda} = 0,$$





Absorption Cross Section of Charged Black Holes [s=1,2 cases]

Asymptotic Conditions

$$\varphi_{\pm}^{\lambda} \propto
\begin{cases}
e^{-i\omega r_*} + A_{\pm}^{\lambda} e^{i\omega r_*}, & (r_* \to +\infty); \\
B_{\pm}^{\lambda} e^{-i\omega r_*}, & (r_* \to -\infty).
\end{cases}$$

Purely EM incident wave:

$$F^{\lambda} pprox F^{\lambda}_{\mathrm{in}} e^{-i\omega r_{*}} + F^{\lambda}_{\mathrm{out}} e^{i\omega r_{*}};$$
 $G^{\lambda} pprox G_{\mathrm{out}} e^{i\omega r_{*}}.$

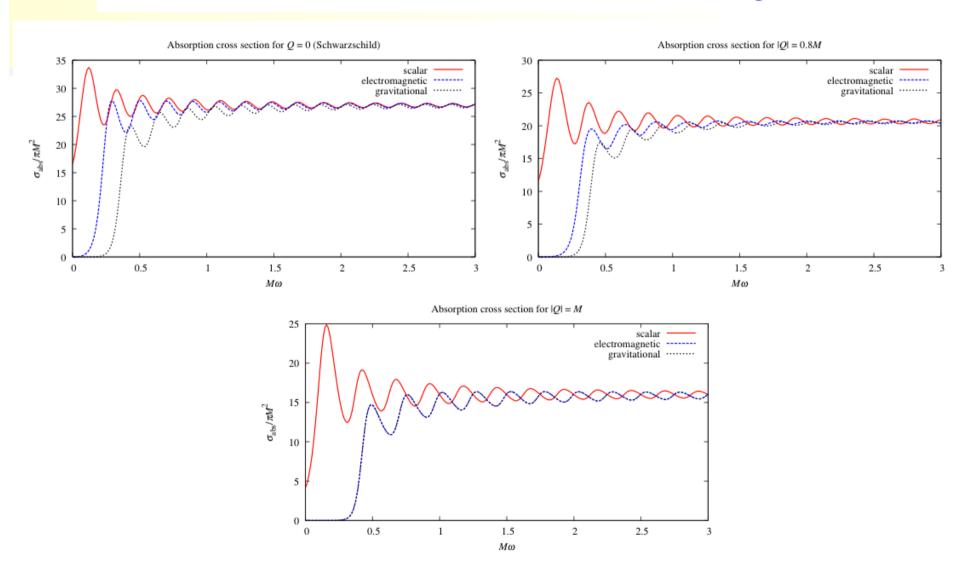
Purely G incident wave:

$$F^{\lambda} \approx F^{\lambda}_{\text{out}} e^{i\omega r_*};$$
 $G^{\lambda} \approx G_{\text{in}} e^{-i\omega r_*} + G_{\text{out}} e^{i\omega r_*}.$

Absorption Cross Section of Charged Black Holes [s=1,2 cases]

Absorption Cross Section

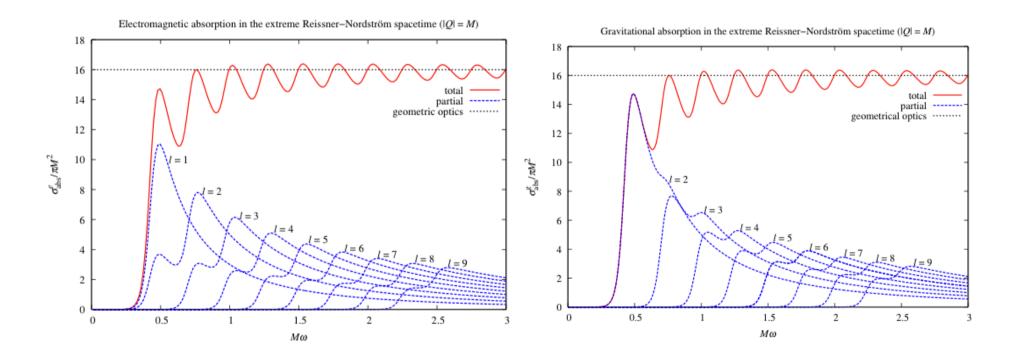
Different Charges



Absorption Cross Section of Charged Black Holes [s=1,2 cases]

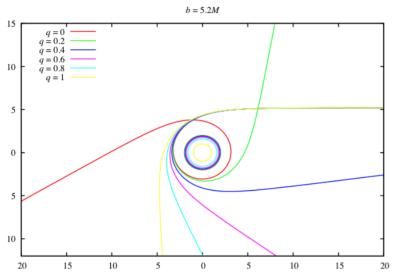
Absorption Cross Section

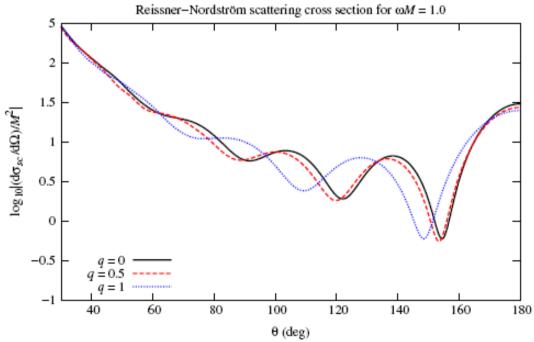
Extreme Case



Scattering by Reissner-Nordström black holes

Scattering Cross Section of Charged Black Holes Massless Scalar Field





Scattering Cross Section of Charged Black Holes Electromagnetic Field

$$\frac{d\sigma}{d\Omega} = \frac{1}{8\omega^2} \left\{ \left| \sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} \left[e^{2i\delta_l^-(\omega)} T_l(\theta) + e^{2i\delta_l^+(\omega)} \pi_l(\theta) \right] \right|^2 + \left| \sum_{l=1}^{\infty} \frac{2l+1}{l(l+1)} \left[e^{2i\delta_l^-(\omega)} \pi_l(\theta) + e^{2i\delta_l^+(\omega)} T_l(\theta) \right] \right|^2 \right\},$$

$$e^{2i\delta_l^{\mathcal{P}}(\omega)} = (-1)^{l+1} R_{\omega l}^{\mathcal{P}},$$

$$\pi_l(\theta) \equiv \frac{P_l^1(\cos \theta)}{\sin \theta}, \qquad T_l(\theta) \equiv \frac{d}{d\theta}P_l^1(\cos \theta)$$

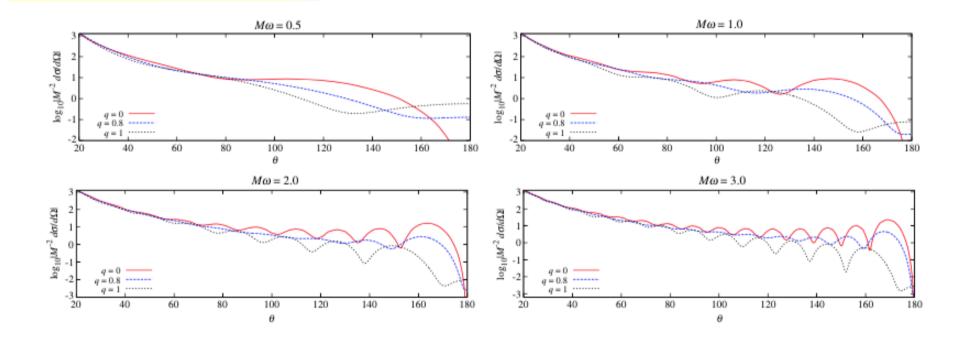
Scattering Cross Section of Charged Black Holes [s=1,2] Electromagnetic Field

$$\frac{d\sigma}{d\Omega} = \frac{1}{2} \left(|\mathcal{F} + \mathcal{G}|^2 + |\mathcal{F} - \mathcal{G}|^2 \right) = |\mathcal{F}|^2 + |\mathcal{G}|^2,$$

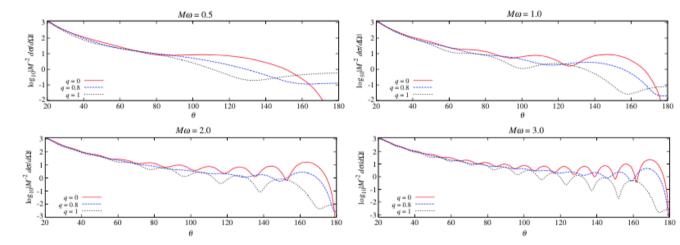
$$\mathcal{F}(\theta) = \frac{\pi}{i\omega} \sum_{l=1}^{\infty} \sum_{\mathcal{P}=\pm} \left[\exp\left(2i\delta_l^{\mathcal{P}}\right) - 1 \right] {}_{-1}Y_l^1(1) {}_{-1}Y_l^1(\cos\theta),$$

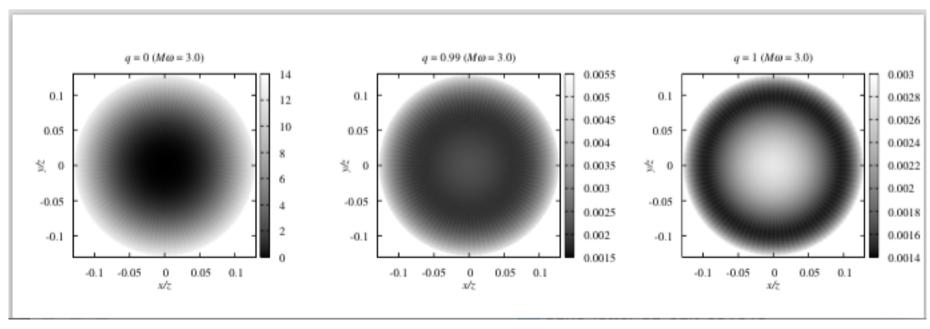
$$\mathcal{G}(\theta) = \frac{\pi}{i\omega} \sum_{l=1}^{\infty} \sum_{\mathcal{P}=+}^{\infty} \left[\exp\left(2i\delta_l^{\mathcal{P}}\right) - 1 \right] \mathcal{P}(-1)^l {}_{-1}Y_l^1(1) {}_{-1}Y_l^1(-\cos\theta).$$

Scattering Cross Section of Charged Black Holes Electromagnetic Field

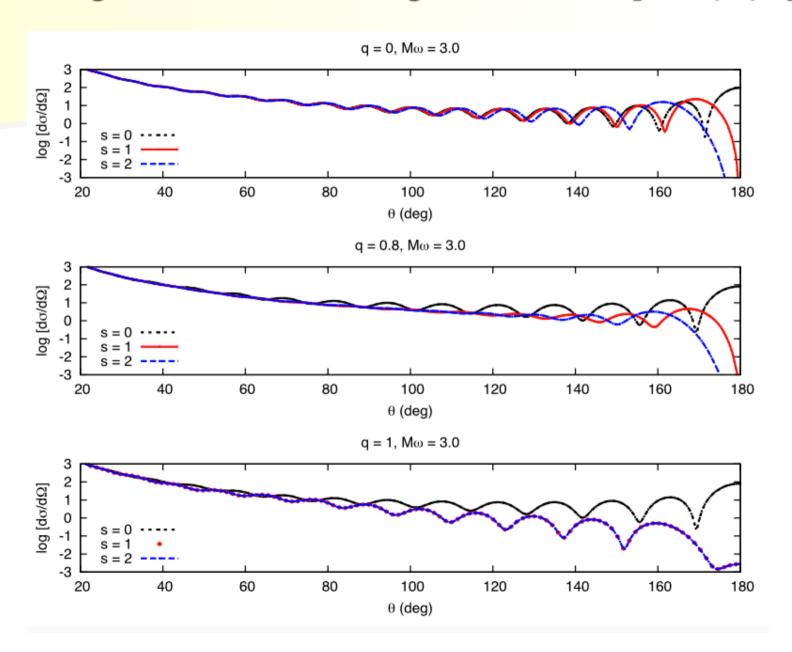


Scattering Cross Section of Charged Black Holes Electromagnetic Field





Scattering Cross Section of Charged Black Holes [s = 0, 1, 2]



Scattering Cross Section of Charged Black Holes [s = 0, 1, 2]

N=2 supergravity

$$\mathcal{L} = -\frac{\sqrt{-g}}{2} \left[\hat{R} + i \overline{\psi_{\mu}^{(I)}} \gamma^{[\mu} \gamma^{\rho} \gamma^{\sigma]} \hat{D}_{\rho} \psi_{\rho}^{(I)} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right]$$

$$+ \frac{\sqrt{-g}}{4\sqrt{2}} \overline{\psi_{\mu}^{(I)}} \left[F^{\mu\nu} + \hat{F}^{\mu\nu} + \frac{1}{2} \gamma_5 (\tilde{F}^{\mu\nu} + F^{\overline{\mu}\nu}) \right] \psi_{\nu}^{(J)} \epsilon^{IJ},$$

where I, J take values 1, 2 and $\epsilon^{12}=-\epsilon^{21}=1$, $\epsilon^{11}=\epsilon^{22}=0$.

$$\hat{F}_{\mu\nu} = \left(\partial_{\mu}A_{\nu} - \frac{1}{2\sqrt{2}}\overline{\psi_{\mu}^{(I)}}\psi_{\nu}^{(J)}\epsilon^{IJ}\right) - (\mu \leftrightarrow \nu),$$

$$\tilde{F}^{\mu\nu} = \epsilon^{\mu\nu\lambda\sigma}F_{\lambda\sigma}.$$

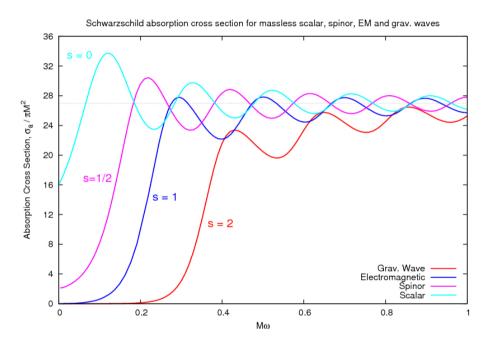
The Lagrangian \mathcal{L} is invariant up to a total derivative under

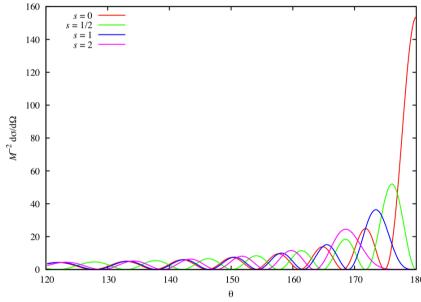
$$\begin{split} \delta g_{\mu\nu} &= \frac{i}{\sqrt{2}} \overline{\alpha^{(I)}} \gamma_{(\mu} \psi_{\nu)}^{(I)}, \quad \delta A_{\mu} = i \overline{\alpha^{(I)}} \psi_{\mu}^{(J)} \epsilon^{IJ}, \\ \delta \psi_{\mu}^{(I)} &= \hat{D}_{\mu} \alpha^{(I)} + \frac{1}{2} \epsilon^{IJ} \left(\hat{F}_{\mu\lambda} \gamma^{\lambda} + \frac{1}{2} \hat{\bar{F}}_{\mu\lambda} \gamma^{\lambda} \gamma_{5} \right) \alpha^{(J)}. \end{split}$$

Conversion Cross Section of Charged Black Holes

• The gravitational to electromagnetic conversion cross section of the Reissner-Nordström black hole are currently under investigation.

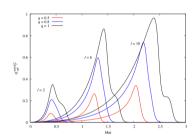
 Absorption and scattering by black holes have been recently revisited in the literature using numerical techniques.



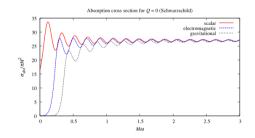


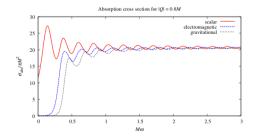
Conversion between electromagnetic and gravitational radiation.

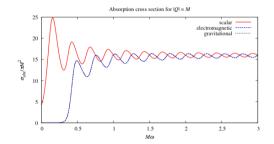




• Equality between gravitational and electromagnetic absorption cross sections of extreme Reissner-Nordström black holes.







 It is possible to infer the black hole charge from backscattered and electromagnetic radiation.

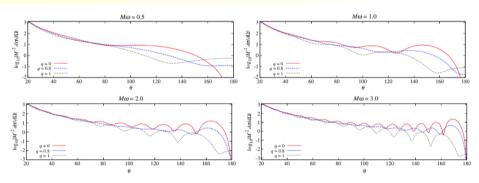
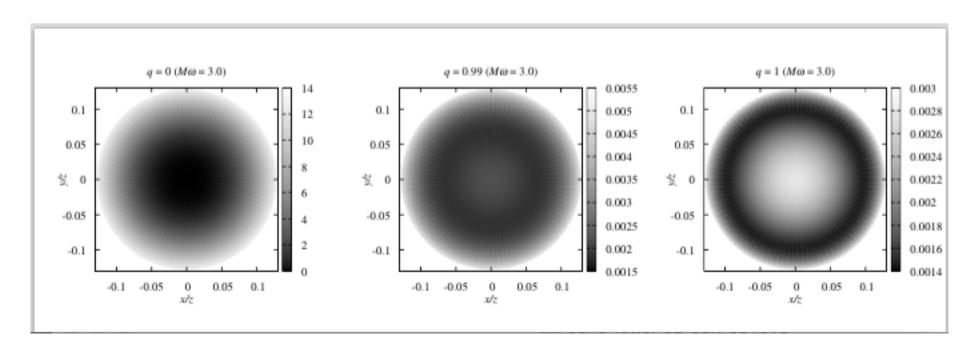
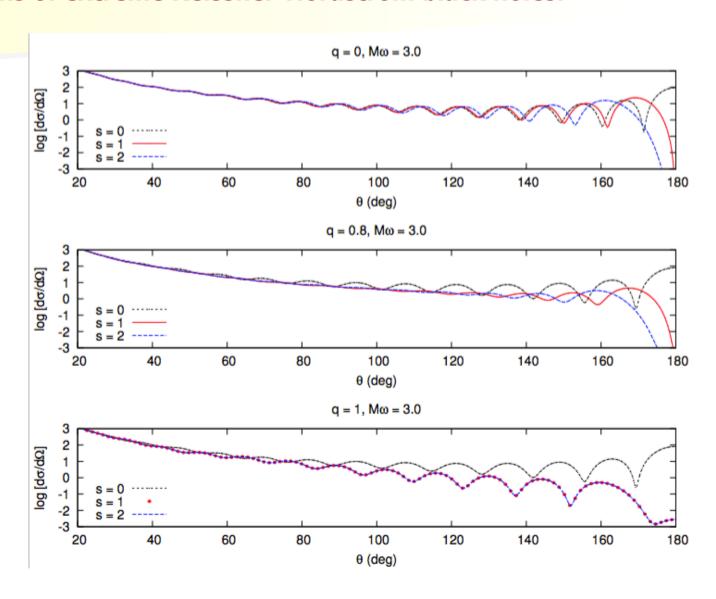


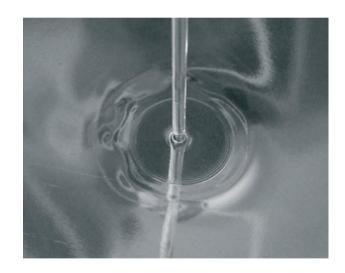
FIG. 1 (color online). Electromagnetic scattering by Reissner-Nordström black holes for q = 0, 0.8, 1 and $M\omega = 0.5, 1.0, 2.0, 3.0$. For $0 < q \le 1$, the flux of EM radiation in the backward direction is nonzero; it diminishes as $M\omega$ increases.



• Equality between gravitational and electromagnetic scattering cross sections of extreme Reissner-Nordström black holes.



 Analogue models (fluids, optics, Bose-Einstein condensates, etc.) of gravity presents as a possibility of verifying black hole physics in the laboratory.



Thanks!

(crispino@ufpa.br)

Collaborators: Atsushi Higuchi, Ednilton Santos de Oliveira, Samuel Richard Dolan, ...