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1) Gravitational lensing



Gravitational lensing and the confirmation of General Relativity

New York Times, 10 November 1919 (L); Illustrated London News, 22 November 1919 (R).



Einstein Cross

Gravitational lens G2237 + 0305. 
 Four images of a very distant quasar 

due to a relatively nearby galaxy.
 The angular separation between the upper and lower images is 1.6 arcseconds.



Using the 
Multi Unit 

Spectroscopic 
Explorer 
in VLT

Images of the galaxy cluster MACSJ1149+2233, in November 2014, 
revealed a distant exploding star -- a supernova -- split into four separate images through gravitational lensing.

A further replay is expected to peak in brightness between March and June 2016, 
with a possible first detection before the end of 2015. 



2) Black hole shadows and lensing



Consider a “bright” homogeneous background with angular size much larger than the BH

2M



Consider a “bright” homogeneous background with angular size much larger than the BH

As seen by the distant observer the BH will cast a shadow in the middle 
of the large bright source, larger than the horizon scale 

The rim of the BH shadow corresponds to a critical impact parameter:

2M

33/2M

d ≡ j

E
= 33/2M



Pedro Cunha’s M.Sc thesis (2015)



Technique: backwards ray-tracing 

camera

Cunha, M.Sc. Thesis
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set. The final vector, e3, is found by calculating the
generalized cross product of the other three; explicitly,

e3ρ = �λµνρe0
λe1

µe2
ν , (7)

where �λµνρ is the Levi-Civita tensor (see [24, p. 202] for
more details).

Given the four orthonormal unit vectors, we can con-
struct a null vector ξ tangent to the geodesic that enters
the camera from a given direction. The vector ξ will be
proportional to the four-momentum of a photon following
the geodesic; that is, p = qξ for some positive constant
q. We define ξ by

ξλ(a,b) = Ce λ
0 − e λ

1 − [(2b− 1) tan(αv/2)]e
λ

2

− [(2a− 1) tan(αh/2)]e
λ

3 ,
(8)

where a, b ∈ [0, 1] give the ray’s arrival direction in terms
of fractions of the image’s horizontal and vertical lengths,
respectively, and αv,αh are the angular sizes of the cam-
era aperture (field of view angles) in the vertical and hor-
izontal directions. For the sign convention chosen in (8),
(a, b) = (0, 0) corresponds to a photon seen at the bottom
left corner of the image. We find C by requiring that ξ
is null, i.e., ξ · ξ = 0:

C =
�
1 + (2b− 1)2 tan2(αv/2) + (2a− 1)2 tan2(αh/2).

(9)
We then use the metric to lower the index on ξ, and
we compute the initial value of our evolution variable Πi

using Πi = pi/(αp0) = ξi/(αξ0). Note that Πi is inde-
pendent of the proportionality constant q relating ξ and
the actual photon momentum p; physically, this is be-
cause the photon trajectory is independent of the photon
energy. The only place where q enters is in the initial
value of αp0 in (5). We fix the value of q by demand-
ing that the energy of the photon in the frame of the
camera be unity when the photon strikes the camera, so
Ecamera = 1 in (6).

C. Image generation

We create our image of the physical system by dividing
the image plane into rectangular regions corresponding to
the pixels of the output image and assigning an appro-
priate color to each region. Because each region has an
extended size, there is no single source point we can look
at to obtain its color, so we must adopt some prescrip-
tion for assigning a single color to each pixel. We use two
different prescriptions, based on the nature of the light
source illuminating the system.

For extended sources, such as the artificial grid in fig-
ure 3, we use a subpixel sampling method. On each pixel
we construct an evenly spaced grid of points, and at each
of these points we determine where incident light rays
originate, either from one of the holes or a location at
infinity. We assign a color to each grid point based on

FIG. 3. An illustration of our artificial background grid
“painted on” a sphere at infinity. This background is used for
all the images with a grid in this paper. In the figure, we cut
a window out of the sphere to show the inside. In addition to
four colors differentiating the regions of the sphere, we include
a white reference spot in the direction in which the camera is
pointing.

that of the corresponding source point; the color of the
pixel is then the average of these. We find that a grid
of 4 × 4 sample points gives sufficiently smooth images
without too much computational cost. For these images,
we neglect the effects of redshift and focus on the spatial
distortions.
To create more astronomically relevant images, we

wish to use a collection of point sources (i.e., stars) as our
illumination. In this case we cannot determine a pixel’s
color using sampling, but must instead sum the contribu-
tions from all the point sources contributing light there.
For our list of sources, we use about 3.4× 108 stars from
the Two Micron All Sky Survey (2MASS) [25]. To sim-
plify computations, we approximate each star as a ther-
mal source with temperature and brightness determined
by fitting to the photometric information in the catalog.
When we calculate the contribution of each star to the
light arriving at the camera, we must account not only
for its properties as a light source, but also for the effects
of the spacetime curvature encountered by the photon.
These effects come in two forms. First, the observed en-
ergies of photons at the camera will be modified by red-
shift effects, changing sources’ apparent brightnesses and
temperatures. Second, the spatial convergence or diver-
gence of nearby geodesics produces an overall adjustment
to each source’s apparent brightness without affecting its
spectrum. Both of these effects are discussed in detail in
Mollerach and Roulet [26]. After we have drawn the en-
tire image in this manner, we convolve it with a blurring
function to make the stars more visible. This has the
effect of transforming each star into a fuzzy circle with
size dependent on its brightness.
The result of this scheme can be seen in figure 1, which

shows the BBH image from figure 11 in front of a back-
ground of stars. Note that by generating our starfield
images from a catalog of point sources, we obtain a sub-
stantially more realistic image than would be generated
by applying the lensing deformation to a raster image

Light source is a “painted on” sphere at infinity:
- four colored quadrants with a superimposed grid;

- bright reference spot in the direction towards which we point the camera. 

A. Bohn et al. arXiv:1410.7775



Visualization from camera (60º field of view): Minkowski
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The difference between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two different configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from different angles
produces the same lensing effects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to different lensing effects
from different viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60◦ field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin χ = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric effect of viewing a latitude-longitude grid.
In the top right image, we see the lensing effects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.

- no deflection of light;
- bowing of the grid lines is an expected geometric effect 

of viewing a latitude-longitude grid.

10º by 10º squares



Visualization from camera (60º field of view): Schwarzschild
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of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The difference between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two different configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from different angles
produces the same lensing effects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to different lensing effects
from different viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60◦ field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin χ = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric effect of viewing a latitude-longitude grid.
In the top right image, we see the lensing effects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.

BH
Shadow

White dot
on grid at 

“infinity” has 
been lensed

into an
Einstein ring 5

of the unlensed Milky Way stars. In such a raster im-
age, each star is usually represented (whether as a result
of camera optics or software rendering) as a blurred cir-
cle whose area depends on the star’s brightness. These
circles are typically hundreds of arc seconds wide, and
therefore lensing distortions applied to the image tend to
produce stars that appear as smeared ellipses. In con-
trast, the angular sizes of real stars are many orders
of magnitude smaller, so we expect them to remain as
unresolved points under all but the most extreme lens-
ing magnifications. These unresolved points can then
be rendered as previously described, giving stars that
better portray what an observer would actually see (as
in figure 1). The difference between these methods lies
in the non-commutativity between the lensing deforma-
tions and the blurring of each star. A minor shortcoming
of our method arises at Einstein rings (discussed in sec-
tion IIIA), where the magnification diverges. There a
star could in principle (though with very low probabil-
ity) appear as an extended object, but in our treatment
it would remain point-like. On the other hand, blurring
first and then lensing is almost guaranteed to produce
unphysical extended streaks at the Einstein ring.

III. RESULTS

Before applying our lensing code to binary black hole
systems, we generate images of simpler analytic space-
times. These serve both to provide checks that our im-
ages are consistent with earlier work, and also to illus-
trate general features of lensing around black holes that
will appear again in BBH images. We then proceed to
show two different configurations of BBH mergers.

To help visualize the lensing, we divide our light source
at infinity into colored quadrants with a superimposed
grid. An external view of this sphere is shown in figure 3.
In addition to the colored sections, our light source has
a bright reference spot in the direction towards which we
point our camera. This spot will prove useful in illustrat-
ing an important feature of black hole lensing called an
Einstein ring.

A. Analytic spacetimes

In figure 4, we compare a flat space image with the
images obtained by lensing our light source through
Schwarzschild and Kerr black hole spacetimes. The top
row from left to right shows flat Minkowski space and a
Schwarzschild black hole. These spacetimes are spher-
ically symmetric, so viewing them from different angles
produces the same lensing effects. The bottom row shows
a Kerr black hole, where in the left frame the spin vector
is pointing out of the page and in the right frame it is
pointing up. Here the spin breaks the spherical symme-
try of the spacetime, leading to different lensing effects
from different viewing directions.

FIG. 4. Lensing caused by various analytic spacetimes.
For all panels, we use figure 3 as a background, oriented
such that the camera is pointed at the white reference dot.
The camera has a 60◦ field of view and is at a distance of
15 Schwarzschild radii from the origin measured using Kerr-
Schild coordinates [24]. The top row shows Minkowski and
Schwarzschild spacetimes. The bottom row shows two views
of the Kerr spacetime, with dimensionless spin χ = 0.95,
viewed with the camera pointing parallel to the spin axis of
the black hole (bottom left) and perpendicular to the spin
axis (bottom right).

In Minkowski space in the top left image we expect no
deflection of light, which is what we observe. The camera
sees an upright image of the portion of the grid near the
white dot. The bowing of the grid lines is an expected
geometric effect of viewing a latitude-longitude grid.
In the top right image, we see the lensing effects of a

non-spinning black hole. The black circle in the center of
the image is called the shadow of the black hole, where
the hole prevents any light from reaching the camera.
Alternatively, a shadow is a region of the image where
geodesics are traced backwards in time from the camera
to a black hole. Another prominent feature is that the
white dot on our grid at infinity has been lensed into a
large ring, called an Einstein ring [27]. Light from the
point situated directly on the opposite side of the black
hole, the antipodal point, will by symmetry be lensed into
a ring around the black hole as observed by our camera.
Regions inside the Einstein ring correspond to photons
that are deflected by larger angles than are the Einstein
ring photons; this results in an inverted image of the
reference grid inside the Einstein ring. A second Einstein
ring can be seen near the shadow, corresponding to light
from a source behind the camera wrapping around the
hole on its way to the camera. In fact, photons can wind
an arbitrarily large number of times around the black
hole, resulting in an infinite number of Einstein rings.

Regions inside
the Einstein 

ring: photons 
deflected by 
larger angles 
than Einstein 
ring photons 

=>
inverted image

of reference 
grid

Second
Einstein ring

corresponding 
to light from 

a source 
behind the 

camera

There will be 
an infinite 
number of

Einstein rings



http://www.black-holes.org/the-science-numerical-relativity/numerical-relativity/gravitational-lensing

3.4*10^8
stars from
the Two 

Micron All 
Sky Survey 
(2MASS)

http://www.black-holes.org/the-science-numerical-relativity/numerical-relativity/gravitational-lensing
http://www.black-holes.org/the-science-numerical-relativity/numerical-relativity/gravitational-lensing
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3) Kerr black holes with scalar hair

An example of a model with very different shadows



Massive-complex-scalar-vacuum:

S =
1

4π

�
d4x

√
−g

�
R

4
−∇µΦ

∗∇µΦ− µ2Φ∗Φ

�

There are BH solutions:
- within GR (not alternative theories of gravity);

- with matter obeying all energy conditions;
- which can yield distinct phenomenology;

which are:
- asymptotically flat

- regular on and outside the horizon
- continuously connecting to the Kerr solution

- continuously connected to gravitating solitons (boson stars)
- with an independent scalar charge (primary hair)

Kerr Black Holes with scalar hair
C.H. and Radu, PRL 2014



Einstein Klein-Gordon: non-linear setup

Ansatz:

ds2 = −e2F0(r,θ)Ndt2 + e2F1(r,θ)

�
dr2

N
+ r2dθ2

�
+ e2F2(r,θ)r2 sin2 θ (dϕ−W (r, θ)dt)2

Φ = φ(r, θ)ei(mϕ−wt)

N = 1− rH
r

Four input parameters:

m,w, rH , n

Synchronization condition:

ΩH =
w

m
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Five parameters family of solutions:
3 continuous parameters (M,J,q)

2 discrete parameters (m,n)



4) Lensing by boson stars

Spherical case



ds2 = −e2F0(r,θ)dt2 + e2F1(r,θ)
�
dr2 + r2dθ2

�
+ e2F2(r,θ)r2 sin2 θ (dϕ−W (r, θ)dt)2

Φ = φ(r, θ)ei(mϕ−wt)

Rotating:
Yoshida and Eriguchi (1997)
Schunck and Mielke (1998)

Three input parameters: 
(w, m=1,2,3,..., n)

Boson Stars:

Spherical:
Kaup (1968); Ruffini and Bonazzola (1969)
Review: Liebling and Palenzuela (2012)

Two input parameters: 
(w, m=0, n)
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We have performed ray tracing to compute
lensing and shadows.

The full celestial
sphere

The “camera” 
opening angle

Following A. Bohn et al. arXiv:1410.7775
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Two inverted copies inside the Einstein ring:
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just after the backbending;

Then, a new pair of Einstein rings appears
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4) Lensing by boson stars

Rotating case
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5) Shadows of Kerr black holes with scalar hair



Can we distinguish by a local measurement degenerate configurations?

There is non uniqueness
(different solutions for same ADM M,J); 

but degeneracy raised with q

Kerr black holes with scalar hair
may be regarded as a 

boson star around and co-rotating
with a central horizon

The central horizon may be
non-Kerr like

(violate the Kerr bound in terms of horizon quantities)
One may anticipate unfamiliar shadows.



A Kerr-like hairy black hole
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A Kerr-like Kerr BH with scalar hair

Hairy BH:
M=0.393; J=0.15 (horizon)

M=0.022; J=0.022 (scalar field)

Vacuum Kerr BH: 
M=0.415; J=0.172



A non-Kerr-like hairy black hole
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A non-Kerr-like hairy black hole

Hairy BH:
M=0.234; J=0.115 (horizon)

M=0.699; J=0.625 (scalar field)

Vacuum Kerr BH: 
M=0.933; J=0.740



More non-Kerr-like hairy black holes
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Qualitatively new feature: 
multiple shadows of a single black hole



A very non-Kerr-like hairy black hole

Hairy BH:
M=0.018; J=0.002 (horizon)

M=0.957; J=0.848 (scalar field)

Vacuum Kerr BH 
M=0.975; J=0.85



6) Outlook



Kerr black holes with scalar hair can provide remarkably different phenomenology, 
and in particular

shadows
for a solution of General Relativity coupled to a simple matter system,

obeying all energy conditions.



Kerr black holes with scalar hair can provide remarkably different phenomenology, 
and in particular

shadows
for a solution of General Relativity coupled to a simple matter system,

obeying all energy conditions.

Thank you!

Movie by
Pedro Cunha


