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Introduction 
 Perturbation analysis:   
• GW emission from a particle  
          plunging into or orbiting around a BH  
• Stability problem 
                   Stable          final state of gravitational collapse  
                 Unstable     New branch of solutions 

• Information about the geometry:   Quasi-Normal Modes  
• Insights into Uniqueness/non-uniqueness 
• Attempt to find new, approximate solutions  

                                      (by deforming an existing solution) 



                        Purpose of this talk 
   
A brief overview of linear perturbation theory of  
                 higher dimensional black holes 



Two major issues when formulating perturbation theory 

• Fixing gauge ambiguity 
     Imposing suitable gauge conditions 

             or  
           Constructing manifestly gauge-invariant variables 
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• Fixing gauge ambiguity 
     Imposing suitable gauge conditions 

             or  
           Constructing manifestly gauge-invariant variables 
 
• Reduction of perturbation equations to  

              a simple, tractable form (master equation) 
            Classifying  perturbations into mutually decoupled groups 
 
            Separating  variables 



4D master equations   

      Static  asymptotically  flat vacuum case    Regge-Wheeler 57         

                                                                                                Zerilli 70                                                                                    
                                       charge case       Moncrief 

                                  --  Stability                Regge-Wheeler 57, Veshveshwara 70 …    
                                                                     

                           asymptotically AdS/dS  case             Cardoso-Lemos 

                                 ---   set of decoupled self-adjoint ODEs 

       Stationary Rotating vacuum (Kerr) case       Teukolsky 72   

                                   --- Stability            Press-Teukolsky 73  --- Whihting 89 …     

                      asymptotically AdS/dS  case     Chambers-Moss  94                                



• D>4 General Relativity  
      No uniqueness like 4D GR 
  
   
 
 
    Many unstable black (rotating) objects 
 
 
        Uniqueness holds for “stable” black objects 

Classification Problem in Higher Dimensions 

Dynamical uniqueness theorem  
 



• Rotating BH case       Not separable in general  (e.g., Durkee-Godazgar-Reall) 
                                      still a long way from having a complete perturbation theory  
                                      
                      Progress in some special cases  
                                   Cohomogeneity-one (odd-dim. ) Myers-Perry BH 
                                                       Kunduri-Lucietti –Reall 07 (Tensor-modes )   
                                                        Murata-Soda 08 (Tensor-Vector-Scalar modes) 
 
                                   Single-spin (cohomogeneity-two) Myers-Perry 
                                                         Kodama-Konoplya-Zhidenko 09                                                   
                                    
                                   Kundt spacetimes  (e.g. Near-horizon geometry)   
                                                                                                          Durkee-Reall 11 
                                     
• Static BH case   simpler and tractable:   

                                                 --  can reduce to a set of decoupled s.a. ODEs 
                                                          Kodama-AI 03  

 

Master equations for higher dimensional black holes 



Background geometry 

 :  m – dim spacetime metric 

 :  n – dim Einstein metric 

-- corresponds to horizon-manifold 

 
This metric can describe a fairly generic class of metrics 



FLRW universe 



FLRW universe 

Static (Schwarzschild-type) black hole  



FLRW universe 

Static (Schwarzschild-type) black hole  

Black-brane  



FLRW universe 

Static (Schwarzschild-type) black hole  

Myers-Perry black hole ( w/ single rotation) 

Black-brane  

Kerr-brane 



 Cosmological perturbation theory 

:   scale factor  

:  homogeneous isotropic time-slice 

:  FLRW background metric 

Perturbations                           are decomposed into 3 types  
according to its tensorial behaviour on time-slice 
 
Tensor-type:    transverse-traceless (  possible only when                )             
                                                          Gravitational Waves  

Vectro-type:    div-free vector       couple to matter  
                                                                                 e.g.   velocity perturbations  
Scalar-type:     scalar                       couple to matter  
                                                                                 e.g.   density perturbations     

Gauge-invariant formulation      Bardeen 80     Kodama-Sasaki 84 



Brane-world cosmology 
• AdS - (Black Hole)-Bulk spacetime  
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• Brane-world   

Bulk perturbations induce  brane-world cosmological perturbations 
       ---  need to develop a formula for AdS-Black Hole perturbations  
       ---  convenient to decompose bulk perturbations into  
                    Tensor-, Vector-, Scalar-type  wrt   

Kodama – AI – Seto ‘00 



Black hole background geometry 
  

charge 

ADM-mass 

Cosmological constant 

Static solutions of Einstein-Maxwell + cosmological constant 
                                       in   



Basic strategy to derive master equations   
(1)   Mode-decompose                   as  

Tensor-type                                   new component in  D > 4 case  

Vector-type                                   axial - mode in D = 4 case                        

Scalar-type                                    polar - mode in  D = 4 case                             

(2) Expand                 by  tensor harmonics                               defined on  

(3)   Write the Einstein equations in terms of the expansion coefficients   
        in 2-dim.  spacetime             spanned by  



Tensor-type perturbations 

•             :    Transverse-Traceless harmonic tensor on               

•                    is a gauge-invariant variable   
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•                    is a gauge-invariant variable   

•  Einstein’s equations reduce to Master equation 
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*
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•        :   Div.-free vector harmonics  on          :        

•  Gauge-invariant variable:     

•  Einstein’s equations reduce to  

*
  

There exists                    such that                                          

Einstein’s equation reduces to Master equation               

--  corresponds to the Regge-Wheeler equation in 4D   



Scalar-type perturbations 

•  Construct  gauge-invariant variables:                             on       

•  After Fourier transf. wrt   ‘    ’   Einstein’s equations reduce to  

• Expand                 by  scalar harmonics        on          :                          

•  Set of 1st –order ODEs for  
•  A  linear algebraic relation among them  
 



Scalar-type perturbations 

•  Construct  gauge-invariant variables:                             on       

•  After Fourier transf. wrt   ‘    ’   Einstein’s equations reduce to  

--- such a system can be reduced to a single wave equation                         

•  For a certain linear combination                    of              

--  corresponds to the Zerilli equation in 4D   

• Expand                 by  scalar harmonics        on          :                          

•  Set of 1st –order ODEs for  
•  A  linear algebraic relation among them  
 

Einstein’s equations reduce to  



Stability analysis 
• Master equation takes the form:  



Stability analysis 
• Master equation takes the form:  

If  “    ”  is a positive self-adjoint operator, the master  
equation does not  admit “unstable” solutions 

---    The black hole is stable 



Stability wrt Tensor-type   

Stable  



Stability wrt Scalar-type 

• Not obvious to see whether                                is positive or not 
…   

The potential is NOT positive definite in D > 4 



Stability proof 

• Define                                       w. some function  

where  

Boundary terms vanish under the Dirichlet conditions                  



Stability proof 

• Define                                       w. some function  

where  

Boundary terms vanish under the Dirichlet conditions                  

Task:     Find           that makes         positive definite 

Then,      is uniquely extended to be a positive self-adjoint operator 



“OK”  “Stable” 

When the horizon manifold              is maximally symmetric 

WRT  Tensor- and Vector-perturbations    Stable over entire parameter range 

WRT  Scalar-perturbations    ???  when  



Potential for Scalar-type pert.  w. non-vanishing      ,   

For extremal and near-extremal case, the potential becomes  
negative  in the immediate vicinity of the horizon  
 

 

 Numerical study for charged-AdS/dS case  Konoplya-Zhidenko 07, 08, 09 



Some generalizations and open problems 



Static black holes in Lovelock theory 

•  Master equations in generic Lovelock theory   Takahashi – Soda 10  
                                     in Gauss-Bonnet theory        Dotti – Gleiser 05  
                    
•  Asymptotically flat, small mass BHs are unstable wrt  
              Tensor-type  perturbations  (in even-dim.)  
              Scalar-type perturbations  (in odd-dim.) 
 
•  Instability is stronger in higher multipoles  rather than low-multipoles 
     

Higher curvature terms involved 
 
 
Equations of motion contain  only up to 2nd-order derivatives 

If                   , then                              for sufficiently large  



Rotating case:  Cohomogeneity-2 Myers-Perry BHs 

Numerical approach to stability analysis 
5D bar-mode Shibata-Yoshino 10 

--- include the ultra-spinning case  

Axisymetric perturbation Dias-et. al. 09 



Cohomogeneity-2 MP case: Analytic formulation? 

Tensor-type perturbations:   A single master scalar variable            on   

    satisfy the same equation for a massless Klein-Gordon field  

How about vector-type and scalar-type perturbations? 



Cohomogeneity-2 MP case: Analytic formulation? 

Tensor-type perturbations:   A single master scalar variable            on   

    satisfy the same equation for a massless Klein-Gordon field  

How about vector-type and scalar-type perturbations? 

KK-reduction  along  the Ricci flat space            
                                 Equations for massive vector/ tensor fields  
                                                         on             :  4-dim. Kerr metric 

Kerr-brane:  4-dim. Kerr-metric +  Ricci flat space 

Pani, Gualtieri, Cardoso, AI 15 



Kunduri-Lucietti –Reall 07,  Murata-Soda 08  

c.f. Cohomogeneity-1 Myers-Perry BHs 



Canonical energy method for initial data 

Symplectic current 

Symplectic  form 

Canonical energy 

Hollands-Wald 13 
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Canonical energy method for initial data 

Symplectic current 

Symplectic  form 

Canonical energy 

Hollands-Wald 13 

This method relates Dynamic and Thermodynamic stability criterion  
and proves Gubser-Mitra conjecture  



 
Role of symmetry in Stability problem 

• Stability of extremal black holes 
 Examine perturbations of the near-horizon geometry 
that respect the symmetry (axisymmetry) of the full BH 
solution 
 

 
 

 
 
 
 
 

Conjectured by Durkee - Reall 11 

Proven by use of Canonical energy method  Hollands-AI 14 

When axi-symmetric perturbations on the NHG violate  
          -BF-bound on the NHG, then the original  
extremal BH is unstable  

… supportd by numerical results.  Dias et al  
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 Examine perturbations of the near-horizon geometry 
that respect the symmetry (axisymmetry) of the full BH 
solution 
 

 
 

 
 
 
 
 

Conjectured by Durkee - Reall 11 

Proven by use of Canonical energy method  Hollands-AI 14 

When axi-symmetric perturbations on the NHG violate  
          -BF-bound on the NHG, then the original  
extremal BH is unstable  

… supportd by numerical results.  Dias et al  

Another application of Canonical energy method  
         Superradiant instability of rotating AdS black holes 
                                      Green-Hollands-AI-Wald 15     VIII BHworkshop 
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• Static HDBHs:   Complete formulation for perturbations 

 
 
 
 
 
 
 
 
 



Summary 

• Static HDBHs:   Complete formulation for perturbations 
 
• Rotating HDBHs:  
   -- Still a long way from having a complete formulation 
   -- Considerable progress recently made for some special 

cases 
 
 



Summary 
• Static HDBHs:   Complete formulation for perturbations 
 
• Rotating HDBHs:  
   -- Still a long way from having a complete formulation 
   -- Considerable progress recently made for some special 

cases 
 

• Interplay between  
                            Exact solutions + Perturbation analysis                           
                            Numerical Analysis 
                            Mathematical Theorems 
 



1915 Einstein equations 

Schwarzschild Solution 1915 

1963 

1957 

1939 

1965 

1970 

1982 

Regge-Wheeler equation 

Zerilli eqution 

Singularity Theorems 

Kerr solution 

Oppenheimer-Snyder 

1973 

1975 
BH Thermodynamcis laws 
Hawking radiation 

Uniqueness Theorem 

1983 Positive Energy Theorem 

Interplay between  Exact solutions + Perturbation                           
                                   Numerical Analysis 
                                   Mathematical Theorems 
 

Teukolsky equation 

Exact Solutions + Perturbation analysis 

Mathematica Theorems 

Numerical Approach 
1985 Accurate method to BH QNMs 



1986 Myers-Perry Solution 

Gregory-Laflamme Instability 

AdS-CFT correspondence 

BTZ Solution 

Brane-world scenario 

1993 

1997 
1998 

2001 

2015 

Emparan-Reall black ring 

BSSN system in Numerical GR 
Choptuick’s critical collapse in Numerical GR 

 
                     Exact solutions + Perturbation                           
                                    

Doubly spinning black ring 
Black saturn 

Multiple- black rings 

Black-lens   Kunduri-Lucietti 

HD BH Perturbation theory:  This talk 



1986 Myers-Perry Solution 

Gregory-Laflamme Instability 

AdS-CFT correspondence 

BTZ Solution 

Brane-world scenario 

1993 

1997 
1998 

2001 

2015 

Emparan-Reall black ring 

BSSN system in Numerical GR 
Choptuick’s critical collapse in Numerical GR 

 
                             Numerical Analysis 
                                 
 

High energy  collisions of BHs  Sperhake et al  

Black-String final fate  Lehner-Pretorius  
Bar-mode instability of MP BH Shibata-Yoshino  
Axisymmetric perturbation of MP BH – Dias et. al  

 Instability of AdS  spacetimes – Bizon-Rostworowsky   



1986 Myers-Perry Solution 

Gregory-Laflamme Instability 

AdS-CFT correspondence 

BTZ Solution 

Brane-world scenario 

1993 

1997 
1998 

2001 

2015 

Emparan-Reall black ring 

BSSN system in Numerical GR 
Choptuick’s critical collapse in Numerical GR 

 
                            Mathematical Theorems 
 

HD generalization of BH Topology Theorem 
HD generalization of BH rigidity (Symmetry) Theorem 
HD Uniqueness/Non-uniqueness Theorems 



1986 Myers-Perry Solution 

Gregory-Laflamme Instability 

AdS-CFT correspondence 

BTZ Solution 

Brane-world scenario 

1993 

1997 
1998 

2001 

2015 

Emparan-Reall black ring 

Higher dimensional General  Relativity 

BSSN system in Numerical GR 
Choptuick’s critical collapse in Numerical GR 

Interplay between  Exact solutions + Perturbation                           
                                   Numerical Analysis 
                                   Mathematical Theorems 
 



At GR Centenary 
• Perturbation theory has played a major role in understanding  
      basic properties—e.g. stability—of exact solutions at hand. 
 
• Numerical Approach has become more important to reveal 

interesting properties of complicated systems and/or to deal with 
more realistic models 
 

• Mathematical theorems as guide lines 
 

• Interplay between  
                 Numerical Approach  
                 Mathematical Theorems and  
                 Exact solution + Perturbation analysis  
    will be getting more and more important .   
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