Perturbation and stability of higher dimensional black holes

Akihiro Ishibashi GR 100 years in Lisbon TECNICO, LISBON, 19 Dec. 2015

Introduction

Perturbation analysis:

• GW emission from a particle

plunging into or orbiting around a BH

• Stability problem

Stable → final state of gravitational collapse Unstable → New branch of solutions

- Information about the geometry: Quasi-Normal Modes
- Insights into Uniqueness/non-uniqueness
- Attempt to find new, approximate solutions (by deforming an existing solution)

Purpose of this talk

A brief overview of linear perturbation theory of higher dimensional black holes

Two major issues when formulating perturbation theory

- Fixing gauge ambiguity
 - ▲ Imposing suitable gauge conditions

or

▲ Constructing manifestly gauge-invariant variables

Two major issues when formulating perturbation theory

- Fixing gauge ambiguity
 - Imposing suitable gauge conditions

or

- Constructing manifestly gauge-invariant variables
- Reduction of perturbation equations to a simple, tractable form (master equation)
 - Classifying perturbations into mutually decoupled groups
 - Separating variables

4D master equations

 Static asymptotically flat vacuum case
 Regge-Wheeler 57

 Zerilli 70
 charge case
 Moncrief

 -- Stability
 Regge-Wheeler 57, Veshveshwara 70 ...

asymptotically AdS/dS case Cardoso-Lemos --- set of decoupled *self-adjoint* ODEs

Stationary Rotating vacuum (Kerr) caseTeukolsky 72--- StabilityPress-Teukolsky 73--- Whihting 89 ...asymptotically AdS/dScaseChambers-Moss94

Classification Problem in Higher Dimensions

D>4 General Relativity
 No uniqueness like 4D GR

Many unstable black (rotating) objects

Dynamical uniqueness theorem Uniqueness holds for "stable" black objects

Master equations for higher dimensional black holes

 Rotating BH case
 Not separable in general (e.g., Durkee-Godazgar-Reall) still a long way from having a complete perturbation theory

Progress in some special casesCohomogeneity-one (odd-dim.) Myers-Perry BH $D \ge 7$ Kunduri-Lucietti –Reall 07 (Tensor-modes)5D Murata-Soda 08 (Tensor-Vector-Scalar modes)

Single-spin (cohomogeneity-two) Myers-Perry $D \ge 7$ Kodama-Konoplya-Zhidenko 09

Kundt spacetimes (e.g. Near-horizon geometry) Durkee-Reall 11

- Static BH case → simpler and tractable:
 - -- can reduce to a set of decoupled s.a. ODEs Kodama-Al 03

Background geometry

$$\mathcal{M}^{D} = \mathcal{N}^{m} \times \mathcal{K}^{n} \qquad ds^{2} = g_{ab}(y)dy^{a}dy^{b} + r^{2}(y)d\sigma_{n}^{2}$$

$$g_{ab}(y)$$
 : m – dim spacetime metric $d\sigma_n^2 = \gamma_{ij}(z)dz^idz^j$: n – dim Einstein metric $R_{ij} = (n-1)K\gamma_{ij}$ $K = \pm 1, 0$

-- corresponds to horizon-manifold

This metric can describe a fairly generic class of metrics

m = 1	$y^a \to t$	FLRW universe	$ds^2 = -dt^2 + r(t)^2 d\sigma_n^2$
-------	-------------	---------------	-------------------------------------

$$m = 1$$
 $y^a \to t$ FLRW universe $ds^2 = -dt^2 + r(t)^2 d\sigma_n^2$

m = 2 $y^a \rightarrow (t, r)$ Static (Schwarzschild-type) black hole

$$ds^{2} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}d\sigma_{n}^{2}$$

$$m = 1$$
 $y^a \rightarrow t$ FLRW universe $ds^2 = -dt^2 + r(t)^2 d\sigma_n^2$

m = 2 $y^a \rightarrow (t, r)$ Static (Schwarzschild-type) black hole

$$ds^{2} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}d\sigma_{n}^{2}$$

 $m \geq 3$ $y^a \rightarrow (t, r, y)$ Black-brane

$$ds^{2} = dy^{2} - f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}d\sigma_{n}^{2}$$

$$m = 1$$
 $y^a \to t$ FLRW universe $ds^2 = -dt^2 + r(t)^2 d\sigma_n^2$

m = 2 $y^a \rightarrow (t, r)$ Static (Schwarzschild-type) black hole

$$ds^{2} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}d\sigma_{n}^{2}$$

 $m \geq 3$ $y^a \rightarrow (t, r, y)$ Black-brane

$$ds^{2} = dy^{2} - f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}d\sigma_{n}^{2}$$

m = 4 $y^a \rightarrow (t, r, \theta, \phi)$ Myers-Perry black hole (w/ single rotation) $r \rightarrow r \cos \theta$

 $ds^2 = \langle\!\langle 4\text{-dim. Kerr type metric} \rangle\!\rangle + r^2 \cos^2 \theta d\sigma_n^2$

Kerr-brane

 $r \to const.$ $ds^2 = \text{Kerr-metric} + d\sigma_n^2$

Cosmological perturbation theory

$$ds^2 = -dt^2 + r(t)^2 d\sigma_n^2$$
 : FLRW background metric

r(t) : scale factor $d\sigma_n^2 = \gamma_{ij}(z) dz^i dz^j$: homogeneous isotropic time-slice n = 3

Perturbations $\delta g_{\mu\nu} = \delta T_{\mu\nu}$ are decomposed into 3 types according to its tensorial behaviour on time-slice ($\mathcal{K}^n, \gamma_{ij}$)

Gauge-invariant formulation Bardeen 80 Kodama-Sasaki 84

Brane-world cosmology

• AdS - (Black Hole)-Bulk spacetime

$$ds_{2+n}^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 d\sigma_n^2$$

• Brane-world $f(r)\dot{t}^2 - \frac{1}{f(r)}\dot{r}^2 = 1$

$$ds_{1+n}^2 = -d\tau^2 + r^2(\tau)d\sigma_n^2$$

Brane-world cosmology

• AdS - (Black Hole)-Bulk spacetime

$$ds_{2+n}^2 = -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 d\sigma_n^2$$

• Brane-world $f(r)\dot{t}^2 - \frac{1}{f(r)}\dot{r}^2 = 1$

$$ds_{1+n}^2 = -d\tau^2 + r^2(\tau)d\sigma_n^2$$

Bulk perturbations induce brane-world cosmological perturbations --- need to develop a formula for AdS-Black Hole perturbations --- convenient to decompose bulk perturbations into Tensor-, Vector-, Scalar-type wrt $d\sigma_n^2 = \gamma_{ij}(z)dz^idz^j$

Kodama – AI – Seto '00

Black hole background geometry

Static solutions of Einstein-Maxwell + cosmological constant in D = 2 + n

$$ds^{2} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}d\sigma_{n}^{2}$$
$$f(r) = K - \frac{2M}{r^{n-1}} + \frac{Q^{2}}{r^{2(n-1)}} - \lambda r^{2}$$

- $K = \pm 1, 0$
- M ADM-mass
 - Q charge
 - $\lambda \propto \Lambda$ Cosmological constant

Basic strategy to derive master equations

(1) Mode-decompose $\delta g_{\mu
u}$ as

Tensor-type \checkmark new component in D > 4 caseVector-type \checkmark axial - mode in D = 4 caseScalar-type \checkmark polar - mode in D = 4 case

(2) Expand $\delta g_{\mu
u}$ by tensor harmonics \mathbb{T}_{ij} \mathbb{V}_i \mathbb{S} defined on \mathcal{K}^n

(3) Write the Einstein equations in terms of the expansion coefficients in 2-dim. spacetime N^2 spanned by $y^a = (t, r)$

Tensor-type perturbations

 $\delta g_{\mu\nu} = \left(\begin{array}{c|c} \mathbf{0} & \mathbf{0} \\ \\ \mathbf{0} & r^{(4-n)/2} \Phi(t,r) \ \mathbb{T}_{ij} \end{array} \right) \left[\begin{array}{c} y^a = (t,r) \\ z^i \end{array} \right]$

• \mathbb{T}_{ij} : Transverse-Traceless harmonic tensor on \mathcal{K}^n

$$(\hat{\bigtriangleup}_n + k_T^2)\mathbb{T}_{ij} = 0 \qquad \mathbb{T}^i{}_i = 0, \quad \hat{D}_j\mathbb{T}^j{}_i = 0$$

• $\Phi(t,r)$ is a gauge-invariant variable

Tensor-type perturbations

 $\delta g_{\mu\nu} = \left(\begin{array}{c|c} \mathbf{0} & \mathbf{0} \\ \\ \mathbf{0} & r^{(4-n)/2} \Phi(t,r) \ \mathbb{T}_{ij} \end{array} \right) \left. \begin{array}{c} y^a = (t,r) \\ \\ z^i \end{array} \right.$

• \mathbb{T}_{ij} : Transverse-Traceless harmonic tensor on \mathcal{K}^n

$$(\hat{\bigtriangleup}_n + k_T^2)\mathbb{T}_{ij} = 0 \qquad \mathbb{T}^i{}_i = 0, \quad \hat{D}_j\mathbb{T}^j{}_i = 0$$

•
$$\Phi(t,r)$$
 is a gauge-invariant variable

• Einstein's equations reduce to Master equation \mathcal{N}^2

$$\left(\Box - \frac{V_T}{f}\right)\Phi = 0$$

$$V_T \equiv \frac{f}{r^2} \left[\frac{n(n+2)}{4} f + \frac{n(n+1)M}{r^{n-1}} + k_T^2 - (n-2)K \right]$$

Vector-type perturbations

$$\delta g_{\mu\nu} = \left(\begin{array}{c|c} \mathbf{0} & h_a(t,r) \mathbb{V}_i \\ \mathbf{*} & H(t,r) D_{(i} \mathbb{V}_{j)} \end{array} \right) \left. \begin{array}{c} y^a = (t,r) \\ z^i \end{array} \right.$$

- \mathbb{V}_i : Div.-free vector harmonics on \mathcal{K}^n : $(\hat{\bigtriangleup}_n + k_V^2)\mathbb{V}_i = 0$, $\hat{D}_i\mathbb{V}^i = 0$
- Gauge-invariant variable: $F^a := r^{n-2}h^a \frac{r^n}{2}D^a\left(\frac{H}{r^2}\right)$
- Einstein's equations reduce to $\int D_a F^a$

$$\begin{bmatrix} D_a F^a = 0 & \cdots & (1) \\ \Box F^a + \cdots = 0 & \cdots & (2) \end{bmatrix}$$

Vector-type perturbations

$$\delta g_{\mu\nu} = \left(\begin{array}{c|c} \mathbf{0} & h_a(t,r) \mathbb{V}_i \\ \mathbf{*} & H(t,r) D_{(i} \mathbb{V}_{j)} \end{array} \right) \left. \begin{array}{c} \mathbf{y}^a = (t,r) \\ \mathbf{z}^i \end{array} \right.$$

• \mathbb{V}_i : Div.-free vector harmonics on \mathcal{K}^n : $(\hat{\bigtriangleup}_n + k_V^2)\mathbb{V}_i = 0$, $\hat{D}_i\mathbb{V}^i = 0$

• Gauge-invariant variable: $F^a := r^{n-2}h^a - \frac{r^n}{2}D^a\left(\frac{H}{r^2}\right)$

(2)

• Einstein's equations reduce to $\begin{bmatrix} D_a F^a = 0 & \cdots & (1) \\ \Box F^a + \cdots = 0 & \cdots & (2) \end{bmatrix}$

$$\left(\Box - \frac{V_V}{f}\right)\Phi = 0 \qquad V_V \equiv \frac{f}{r^2} \left[k_V^2 - (n-1)K + \frac{n(n+2)}{4}f - \frac{n}{2}r\frac{df}{dr}\right]$$

-- corresponds to the Regge-Wheeler equation in 4D

Scalar-type perturbations

- Expand $\delta g_{\mu\nu}$ by scalar harmonics \mathbb{S} on \mathcal{K}^n : $(\hat{\bigtriangleup}_n + k_S^2)\mathbb{S} = 0$
- Construct gauge-invariant variables: X, Y, Z on \mathcal{N}^2
- After Fourier transf. wrt 't' Einstein's equations reduce to
 - Set of 1st –order ODEs for X, Y, Z
 A linear algebraic relation among them

Scalar-type perturbations

- Expand $\delta g_{\mu\nu}$ by scalar harmonics \mathbb{S} on \mathcal{K}^n : $(\hat{\bigtriangleup}_n + k_S^2)\mathbb{S} = 0$
- Construct gauge-invariant variables: X, Y, Z on \mathcal{N}^2
- After Fourier transf. wrt 't' Einstein's equations reduce to
 - Set of 1st –order ODEs for X, Y, Z
 A linear algebraic relation among them

--- such a system can be reduced to a single wave equation

• For a certain linear combination $\Phi(t,r)$ of X, Y, Z

Einstein's equations reduce to

$$\left(\Box - \frac{V_S}{f}\right)\Phi = 0$$

-- corresponds to the Zerilli equation in 4D

Stability analysis

• Master equation takes the form:

Stability analysis

• Master equation takes the form:

If "A" is a *positive* self-adjoint operator, the master equation does *not* admit "*unstable*" solutions

--- The black hole is stable

Stability wrt Tensor-type

$$V_T \equiv \frac{f}{r^2} \left[\frac{n(n+2)}{4} f + \frac{n(n+1)M}{r^{n-1}} + k_T^2 - (n-2)K \right] > \mathbf{0}$$

Stability wrt Scalar-type

The potential is *NOT* positive definite in *D* > 4

• Not obvious to see whether $A = -\frac{d^2}{dr_*^2} + V$ is positive or not

. . .

Stability proof

• Define $D := \frac{d}{dr_*} + S$ w. some function S(r) $(\Phi, A\Phi) = -\Phi^* D\Phi|_{\text{bndry}} + \int dr_* |D\Phi|^2 + \tilde{V} |\Phi|^2$ where $\tilde{V} := V + \frac{dS}{dr_*} - S^2$

Boundary terms vanish under the Dirichlet conditions $\Phi = 0$

Stability proof

• Define $D := \frac{d}{dr_*} + S$ w. some function S(r) $(\Phi, A\Phi) = -\Phi^* D\Phi|_{\text{bndry}} + \int dr_* |D\Phi|^2 + \tilde{V} |\Phi|^2$ where $\tilde{V} := V + \frac{dS}{dr_*} - S^2$

Boundary terms vanish under the Dirichlet conditions $\Phi = 0$

Task: Find
$$S(r)$$
 that makes \tilde{V} positive definite

Then, A is uniquely extended to be a positive self-adjoint operator

		Tensor		Vector		Scalar	
		Q = 0	$Q \neq 0$	Q = 0	$Q \neq 0$	Q = 0	$Q \neq 0$
K = 1	$\lambda = 0$	OK	OK	OK	OK	OK	D = 4,5 OK D > 6 ?
	$\lambda > 0$	OK	OK	OK	OK	$D \le 6 \text{ OK}$ $D \ge 7 ?$	$D = 4,5 \text{ OK}$ $D \ge 6 ?$
	$\lambda < 0$	OK	OK	OK	OK	$D = 4 \text{ OK}$ $D \ge 5 ?$	$D = 4 \text{ OK}$ $D \ge 5 ?$
K = 0	$\lambda < 0$	OK	OK	OK	OK	$D = 4 \text{ OK}$ $D \ge 5 ?$	$D = 4 \text{ OK}$ $D \ge 5 ?$
K = -1	$\lambda < 0$	OK	OK	OK	OK	$D = 4 \text{ OK}$ $D \ge 5 ?$	$D = 4 \text{ OK}$ $D \ge 5 ?$

"OK" → "Stable"

WRT Tensor- and Vector-perturbations -> Stable over entire parameter range

WRT Scalar-perturbations \rightarrow ??? when $Q \neq 0$ $\Lambda \neq 0$

Potential for Scalar-type pert. w. non-vanishing Q , Λ

For extremal and near-extremal case, the potential becomes *negative* in the *immediate vicinity* of the horizon

Numerical study for charged-AdS/dS case Konoplya-Zhidenko 07, 08, 09

Some generalizations and open problems

Static black holes in Lovelock theory

Higher curvature terms involved

$$L = \sum_{n=0}^{k} c_m \mathcal{L}_m \qquad \mathcal{L}_m = \frac{1}{2^m} \delta_{\rho_1 \kappa_1 \cdots \rho_m \kappa_m}^{\lambda_1 \sigma_1 \cdots \lambda_m \sigma_m} R_{\lambda_1 \sigma_1}^{\rho_1 \kappa_1} \cdots R_{\lambda_m \sigma_m}^{\rho_m \kappa_m}$$

Equations of motion contain only up to 2^{nd} -order derivatives

$$ds^{2} = -f(r)dt^{2} + \frac{1}{f(r)}dr^{2} + r^{2}d\sigma_{n}^{2}$$
$$f(r) = K - X(r)r^{2}$$

- Master equations in generic Lovelock theory Takahashi Soda 10 in Gauss-Bonnet theory Dotti – Gleiser 05
- Asymptotically flat, small mass BHs are unstable wrt Tensor-type perturbations (in even-dim.) Scalar-type perturbations (in odd-dim.)
- Instability is stronger in higher multipoles rather than low-multipoles

$$(\Phi, A\Phi) = \int dr_* |D\Phi|^2 + \ell(\ell+n-1) \int dr_* N(r) |\Phi|^2$$

If $N(r) < 0$, then $(\Phi, A\Phi) < 0$ for sufficiently large ℓ

Rotating case: Cohomogeneity-2 Myers-Perry BHs

Numerical approach to stability analysis

5D bar-mode Shibata-Yoshino 10

--- include the *ultra-spinning* case

How about vector-type and scalar-type perturbations?

How about vector-type and scalar-type perturbations?

Kerr-brane: 4-dim. Kerr-metric + Ricci flat space

KK-reduction along the Ricci flat space \mathcal{K}^n

→ Equations for massive vector/tensor fields on N^4 : 4-dim. Kerr metric

Pani, Gualtieri, Cardoso, Al 15

c.f. Cohomogeneity-1 Myers-Perry BHs

$$D = \text{odd}, J_1 = J_2 = \cdots J_{[(D-1)/2]}$$

enhanced symmetry: $\mathbb{R} \times U((D-1)/2)$

Perturbation equations reduce to ODEs

Kunduri-Lucietti – Reall 07, Murata-Soda 08

Canonical energy method for initial data

Hollands-Wald 13

Symplectic current

$$w^{a} = \frac{1}{16\pi} P^{abcdef}(\gamma_{2bc} \nabla_{d} \gamma_{1ef} - \gamma_{1bc} \nabla_{d} \gamma_{2ef})$$

Symplectic form $W(\Sigma; \gamma_1, \gamma_2) \equiv \int_{\Sigma} \star w(g; \gamma_1, \gamma_2)$

Canonical energy

$$\mathscr{E}(\Sigma,\gamma) \equiv W(\Sigma;\gamma,\pounds_K\gamma) - B(\mathscr{B},\gamma) - C(\mathscr{C},\gamma)$$

$$B(\mathscr{B},\gamma) = \frac{1}{32\pi} \int_{\mathscr{B}} \gamma^{ab} \delta \sigma_{ab}$$

$$C(\mathscr{C},\gamma) = -\frac{1}{32\pi} \int_{\mathscr{C}} \tilde{\gamma}^{ab} \delta \tilde{N}_{ab}$$

Canonical energy method for initial data

Hollands-Wald 13

Br

 \mathcal{H}_{12}

Symplectic current

$$w^{a} = \frac{1}{16\pi} P^{abcdef}(\gamma_{2bc} \nabla_{d} \gamma_{1ef} - \gamma_{1bc} \nabla_{d} \gamma_{2ef})$$

Symplectic form $W(\Sigma; \gamma_1, \gamma_2) \equiv \int_{\Sigma} \star w(g; \gamma_1, \gamma_2)$

Canonical energy $\mathscr{E}(\Sigma, \gamma) \equiv W(\Sigma)$

$$\mathscr{E}(\Sigma,\gamma) \equiv W(\Sigma;\gamma,\pounds_K\gamma) - B(\mathscr{B},\gamma) - C(\mathscr{C},\gamma)$$

1) \mathscr{E} is gauge invariant

 $B(\mathscr{B},\gamma) = \frac{1}{32\pi} \int_{\mathscr{B}} \gamma^{ab} \delta \sigma_{ab}$

 \mathscr{C}_2

 Σ_2

 Σ_1

 \mathcal{I}_{12} \mathscr{C}_{1}

2) & is monotonically decreasing for any axi-symmetric perturbation

$$C(\mathscr{C},\gamma) = -\frac{1}{32\pi} \int_{\mathscr{C}} \tilde{\gamma}^{ab} \delta \tilde{N}_{ab}$$

Canonical energy method for initial data

Hollands-Wald 13

Br

 \mathscr{H}_{1}

Symplectic current

$$w^{a} = \frac{1}{16\pi} P^{abcdef}(\gamma_{2bc} \nabla_{d} \gamma_{1ef} - \gamma_{1bc} \nabla_{d} \gamma_{2ef})$$

Symplectic form $W(\Sigma; \gamma_1, \gamma_2) \equiv \int_{\Sigma} \star w(g; \gamma_1, \gamma_2)$

Canonical energy $\mathscr{E}(\Sigma, \gamma) \equiv W(\Sigma; \gamma, \pounds_K \gamma) - B(\mathscr{B}, \gamma) - C(\mathscr{C}, \gamma)$

1) \mathscr{E} is gauge invariant

$$B(\mathscr{B},\gamma) = \frac{1}{32\pi} \int_{\mathscr{B}} \gamma^{ab} \delta \sigma_{ab}$$

 \mathscr{C}_2

 Σ_2

 Σ_1

 \mathcal{I}_{12} \mathscr{C}_{1}

2) & is monotonically decreasing for any axi-symmetric perturbation $C(\mathscr{C},\gamma) = -\frac{1}{32\pi} \int_{\mathscr{C}} \tilde{\gamma}^{ab} \delta \tilde{N}_{ab}$

This method relates Dynamic and Thermodynamic stability criterion and proves Gubser-Mitra conjecture

Role of symmetry in Stability problem

• Stability of extremal black holes

Examine perturbations of the near-horizon geometry that respect the symmetry (axisymmetry) of the full BH solution Conjectured by Durkee - Reall 11

When axi-symmetric perturbations on the NHG violate AdS_2 -BF-bound on the NHG, then the oriainal extremal BH is unstable $e^{im_I\phi^I}$ $m_IN^I(x) = 0$.

... supportd by numerical results. Dias et al

Proven by use of Canonical energy method Hollands-Al 14

Role of symmetry in Stability problem

• Stability of extremal black holes

Examine perturbations of the near-horizon geometry that respect the symmetry (axisymmetry) of the full BH solution Conjectured by Durkee - Reall 11

When axi-symmetric perturbations on the NHG violate AdS_2 -BF-bound on the NHG, then the oriainal extremal BH is unstable $e^{im_I\phi^I}$ $m_IN^I(x) = 0$.

... supportd by numerical results. Dias et al

Proven by use of Canonical energy method Hollands-Al 14

Another application of Canonical energy method

→ Superradiant instability of rotating AdS black holes Green-Hollands-AI-Wald 15 VIII BHworkshop

Summary

• Static HDBHs: Complete formulation for perturbations

Summary

- Static HDBHs: Complete formulation for perturbations
- Rotating HDBHs:
 - -- Still a long way from having a complete formulation
 - -- Considerable progress recently made for some special cases

Summary

- Static HDBHs: Complete formulation for perturbations
- Rotating HDBHs:
 - -- Still a long way from having a complete formulation
 - -- Considerable progress recently made for some special cases
- Interplay between

Exact solutions + Perturbation analysis Numerical Analysis Mathematical Theorems

Interplay between Exact solutions + Perturbation Numerical Analysis Mathematical Theorems

- 1915 **Einstein equations** Schwarzschild Solution 1915 1939 **Oppenheimer-Snyder Regge-Wheeler equation** 1957 Kerr solution 1963 Singularity Theorems 1965 Zerilli eqution 1970 1973 **Teukolsky** equation **BH** Thermodynamcis laws 1975 Hawking radiation **Uniqueness Theorem** 1982 **Positive Energy Theorem** 1983
- 1985Accurate method to BH QNMs

Exact Solutions + Perturbation analysis

Mathematica Theorems

Numerical Approach

Exact solutions + Perturbation

Myers-Perry Solution 1986 1993 **BTZ Solution Gregory-Laflamme Instability** Choptuick's critical collapse in Numerical GR **BSSN system in Numerical GR** AdS-CFT correspondence 1997 Brane-world scenario 1998 2001 Emparan-Reall black ring HD BH Perturbation theory: This talk Doubly spinning black ring Black saturn Multiple- black rings 2015 Black-lens Kunduri-Lucietti

Numerical Analysis

- 1986 Myers-Perry Solution
- 1993 BTZ Solution

Gregory-Laflamme Instability Choptuick's critical collapse in Numerical GR BSSN system in Numerical GR

- 1997 AdS-CFT correspondence
- **1998** Brane-world scenario
- 2001 Emparan-Reall black ring

 High energy collisions of BHs Sperhake et al
 Axisymmetric perturbation of MP BH Dias et. al
 Bar-mode instability of MP BH Shibata-Yoshino
 Black-String final fate Lehner-Pretorius

 2015 Instability of AdS spacetimes Bizon-Rostworowsky

Mathematical Theorems

Myers-Perry Solution 1986 1993 **BTZ Solution Gregory-Laflamme Instability** Choptuick's critical collapse in Numerical GR **BSSN** system in Numerical GR AdS-CFT correspondence 1997 Brane-world scenario 1998 2001 Emparan-Reall black ring HD generalization of BH Topology Theorem HD generalization of BH rigidity (Symmetry) Theorem HD Uniqueness/Non-uniqueness Theorems 2015

Interplay between Exact solutions + Perturbation Numerical Analysis Mathematical Theorems

- 1986 Myers-Perry Solution
- 1993 BTZ Solution

Gregory-Laflamme Instability Choptuick's critical collapse in Numerical GR BSSN system in Numerical GR

- 1997 AdS-CFT correspondence
- 1998Brane-world scenario
- 2001 Emparan-Reall black ring

Higher dimensional General Relativity

2015

At GR Centenary

- Perturbation theory has played a major role in understanding basic properties—e.g. stability—of exact solutions at hand.
- Numerical Approach has become more important to reveal interesting properties of complicated systems and/or to deal with more realistic models
- Mathematical theorems as guide lines
- Interplay between

Numerical Approach Mathematical Theorems and Exact solution + Perturbation analysis will be getting more and more important .