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Modern	ParGcle	Physics	of	today		

Gμν=	Tμνsp	+	TμνDM	+	TμνDE	

Gμν	-	Einstein	tensor	describing	the	curvature	of	
space-Gme	(and	hence	the	effect	of	gravity)		

	
Tμνsp	–	standard	parGcles	(baryons,	photons	and	
neutrinos)		

Einstein’s	Equa,on	(ignoring	constants):	

	

TμνDM	–	dark	maOer		

TμνDE	–	dark	energy		

5% 	 				27% 									68% 		
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	FormaGon	of	structure	in	the	Universe	

The	Nature	of	Dark	Ma;er:	Cold	
dark	 ma;er	 weakly	 interac,ng	
par,cles		
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Dark	Ma;er	 Baryons	Reproduce	 the	 observed	
present	 	 baryonic	 structure:	
stars,	 stellar	 clusters,	 galaxies,	
galaxy	clusters				

	Confirmed	by	observa,ons		
Bullet	Cluster	(two	colliding	clusters	of	galaxies)	

dark	ma;er		 baryons		Vera	Rubin	et	al.,	1976,	ApJ	
Le;ers	

Rota,on	curves	for	7	spiral	galaxies		

dark	ma;er		

•  27%	Dark	Ma;er	creates	the	GravitaGonal	web		for	the	formaGon	of	structures	with	5%	of	baryons.		



	FormaGon	of	structure	in	the	Universe	
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Image	LRG	3-757	(gravita,onal	lens)	obtained	by	the	Hubble	Space	Telescope	

dark	ma;er		

baryons		



	FormaGon	of	structure	in	the	Universe	
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Bullet	Cluster	(two	colliding	clusters	of	galaxies)	

dark	ma;er		

baryons		



Modern	ParGcle	Physics	of	today		

Gμν=	Tμνsp	+	TμνDM	+	TμνDE	

Gμν	-	Einstein	tensor	describing	the	curvature	of	
space-Gme	(and	hence	the	effect	of	gravity)		

	
Tμνsp	–	standard	parGcles	(baryons,	photons	and	
neutrinos)		
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TμνDM	–	dark	maOer		
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Modern	ParGcle	Physics	of	today		
Candidates	of	dark	ma;er	par,cles	

WIMPs	(Weakly	
InteracGng	Massive	
ParGcles)‏	



Following	the	evidence,	let	us	now	consider	that	our	dark	ma;er	is	somehow	iden,cal	to	the	
standard	par,cles.	

+	Coupling.+			

standard	par,cles		 mirror	par,cles		

	(dark	par,cle	
+	dark	photon)	

The	obvious	choice	is	to	consider	that	dark	ma;er	(27%)	is	a	mirror	world	of	the	standard	par,cles	
(5%).		

Nevertheless,	we	choose	to	keep	the	dark	ma;er	world	simple	(dark	par,cle	+	dark	photon).	The	
connec,on	between	the	standard	world	and	the	dark	world	is	done	by	a	kinema,c	coupling	term.		

The	Early	Universe	–	dark	maOer	parGcles	

Lopes,	Panci,	Silk	2014	ApJ		
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Dark	MaOer	and	Stars	
Gravity . Matter . Particle Physics 

 



Capture Cooling Annihilation 

  

[Salati & Silk  ApJ 338 (1989)] 

How	does	Dark	MaOer	influence	stars?	

[Gould & Raffelt  ApJ 352 (1990)] [Gould, ApJ 321 (1987)] 



How	does	Dark	MaOer	influence	stars?	

DM Particle Physics DM Astrophysics Stellar physics 

[Lopes, Casanellas & Eugénio,  

  PhysRevD 83 (2011)] 

[Gould, ApJ 321 (1987)] 
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How	does	Dark	MaOer	influence	stars?	

DM Particle Physics DM Astrophysics Stellar physics 

[Lopes, Casanellas & Eugénio,  

  PhysRevD 83 (2011)] 

[Gould, ApJ 321 (1987)] 
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	Dark	MaOer	and	Stars	(few	examples)	
Gravity . Matter . Particle Physics 

 



	PredicGon:	dark	maOer	effect	on	PopulaGon	II	stars	

Observa,onal	predic,on:	The	main	
sequence	of	these	stars	in	the	HR	diagram	
will	be	different	from	the	one	known	for	
populaGon	I	stars.	

Stars	form		in	the	dense	dark	ma;er	halos	(primordial	
Universe	and	core	of	galaxies)	have	their	lives	extended	
(slower	evolu,on	in	the	HD	diagram),	due	to	the	energy	
produced	by	dark	ma;er.				

•  DM	parGcles	with	a	mx	~	100	GeV	and		σSD	(with	
protons)		~	10−38	cm2	

•  For	a	cluster	of	stars	(0.7-3.5	M⊙)	in		DM	halo	(ρx	~	
1010	GeV	cm−3,	conGnuous	lines)	and	classical	
scenario	(dashed	lines).		 Stellar	Cluster	

Casanellas	&	Lopes	(ApJ	LeOers	2011)	
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	PredicGon:	dark	maOer	effect	on	PopulaGon	II	stars	

Observa,onal	predic,on:	The	main	
sequence	of	these	stars	in	the	HR	diagram	
will	be	different	from	the	one	known	for	
populaGon	I	stars.	

Stars	form		in	the	dense	dark	ma;er	halos	(primordial	
Universe	and	core	of	galaxies)	have	their	lives	extended	
(slower	evolu,on	in	the	HD	diagram),	due	to	the	energy	
produced	by	dark	ma;er.				

•  DM	parGcles	with	a	mx	~	100	GeV	and		σSD	(with	
protons)		~	10−38	cm2	

•  For	a	cluster	of	stars	(0.7-3.5	M⊙)	in		DM	halo	(ρx	~	
1010	GeV	cm−3,	conGnuous	lines)	and	classical	
scenario	(dashed	lines).		 Stellar	Cluster	

Casanellas	&	Lopes	(ApJ	LeOers	2011)	
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Dark	maOer	(asymmetric)	changes	the	transport	of	heat	energy	inside	these	stars	(decreasing	the	
central	temperature).	

Asymmetric	dark	maOer	(with	mx	~	5	GeV,	
σSD>	3	10-36	cm2		)		are	excluded	at		95%	CL.	
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Casanellas	&	Lopes		(ApJ	LeOers,	2013)		

Asteroseismology	

Alpha	Cent	B	(0.9	Mo)	

	PredicGon:	dark	maOer	effect	on	PopulaGon	I	stars	

Observa,onal	predic,on:	Suppression	of	the	
convecGve	core	in	1.1-1.3Mo	Main	sequence	stars	



Helioseismology:		The	dipole	interacGon	can	lead	to	a	sizable	DM	scaOering	cross	secGon	even	for	light	DM,	and	asymmetric	DM	
can	lead	to	a	large	DM	number	density	in	the	Sun.	We	find	that	solar	model	precision	tests,	using	as	diagnosGc	the	sound	speed	
profile	obtained	from	helioseismology	data,	exclude	dipolar	DM	parGcles	with	a	mass	larger	than	4.3	GeV	and	magne,c	dipole	
moment	larger	than	1.6	×	10−17	e	cm.	
	

Constraint	on	Light	Dipole	Dark	Ma;er	from	
Helioseismology”,	Lopes,	Kadota	&	Silk	,	ApJ	
LeOers	2014)	

	PredicGon:	dipole	dark	maOer	effect	on	the	Sun	
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The Astrophysical Journal Letters, 780:L15 (4pp), 2014 January 10 Lopes, Kadota, & Silk
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Figure 1. Comparison of the sound speed radial profile between the SSM
(Lopes & Turck-Chieze 2013) and different solar models evolving within an
environment rich in MDDM. The red-green-dotted curve corresponds to the
difference between inverted sound speed profile (Turck-Chieze et al. 1997; Basu
et al. 2009) and our SSM (Turck-Chieze & Lopes 1993; Lopes & Turck-Chieze
2013). The continuous curves correspond to DM particles that have a mass mχ

of 1–20 GeV (blue curve mχ ! 8 GeV, red curve 8 ! mχ ! 12 GeV and cyan
curve mχ " 12 GeV) and a magnetic dipole that takes values from 10−15 e cm
to 10−19 e cm. In the core of the Sun, the variation caused by the presence of
MDDM is much larger that the current sound speed difference between theory
and observation.
(A color version of this figure is available in the online journal.)

The solar models evolving in different MDDM halos are
obtained by a similar procedure to the SSM. Likewise these
models are required to have the observed solar radius and
luminosity at the present age. In our description of the impact
of DM on the evolution of the Sun, we closely follow recent
developments in this field (Cumberbatch et al. 2010; Lopes et al.
2011; Lopes & Silk 2012b, 2012a; Casanellas & Lopes 2013).
A detailed description of how this process is implemented in
our code is discussed in Lopes et al. (2011).

The accumulation of MDDM particles inside the Sun reduces
the temperature in the Sun’s core and, as a consequence, the
sound speed drops, but is compensated for by an increase of
sound speed in the radiative region and the convection zone
(see Figure 1). This results from the fact that these solar models
are required to have a radius and luminosity consistent with
observations. The calibration follows an iterative procedure
identical to the one used to compute the SSM. In principle, we
could use the sound speed and density profiles obtained from
inversion of helioseismology data as a diagnostic tool, however,
we prefer to use the sound speed because only frequencies
of acoustic modes are observed, consequently sound speed
inversion is the more reliable diagnostic method. In the future,
if frequencies of gravity modes are measured with success, the
density profile could become an independent method to probe
the Sun’s core. Figure 1 shows that the sound speed differences
of the solar models computed for different values of mχ and µχ

are quite distinct from the sound speed difference of reference.
This effect is more important for DM particles of relatively low
mass and high magnetic moment. In the case of particles with a
very low mχ , the impact on the sound speed difference profile
becomes insignificant due to the occurrence of DM evaporation.
Although the DM affects the whole internal structure of the star
equally, we focus our analysis on the Sun’s core where the
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Figure 2. Exclusion plot for magnetic dipole DM parameter space (mχ –µχ )
from present day low-Z SSM and helioseismology data. The possible candidates
must lie in the light region, above the iso-contour with 2%. The different isocon-
tour curves represent the maximum difference, i.e., max [(c2

mod − c2
ssm)/c2

ssm] in
the region below 0.3 R⊙—the percentage of the maximum sound difference
between the SSM and the MDDM solar models. The MDDM halo is assumed
to be an isothermal sphere with local density ρχ = 0.38 GeV cm−3, and thermal
velocity (dispersion) vth = 270 km s−1.
(A color version of this figure is available in the online journal.)

direct impact of DM is detected. It is reasonable to consider
that for solar models for which the sound speed difference is
larger than the sound speed difference of the reference model,
or equivalently if this difference is larger than 2%, then these
solar models can be excluded on the basis that they cannot be
accommodated with our current understanding of the physics of
the solar interior. It is true that in the Sun’s deep core the sound
speed difference of the reference solar model still contains a few
uncertainties coming either from an insufficient description of
the physics of the SSM, or poor inversion of the sound speed
profile due to a lack of low degree seismic data. It is believed
that some of the current problems in the SSM are related to
abundances and opacities below the base of the convection zone,
but these localized uncertainties do not affect the core of the
Sun where this diagnostic is done. Moreover, their effect on
the Sun’s structure will be smaller than the observational sound
speed difference. Nevertheless, this uncertainty is at most of the
order of 1.5%. Alternatively, if we choose to use as reference a
high-Z SSM, as the sound speed difference with observations is
of the order of 0.3%, the constraint on the MDDM parameters
could be stronger. Nevertheless, due to the problem related
to the chemical composition in the solar interior (Serenelli
et al. 2011), we take the conservative approach of using the
low-Z SSM which has the largest observational uncertainty as
the reference.

Figure 2 shows the MDDM exclusion plot computed for
different values of mχ and µχ . We choose as diagnostic the
value corresponding to the maximum difference between the
square of the sound speed of the SSM and the sound speed of
the DM solar models. There is a region of the parameter space
for the relatively light DM 4.0 ! mχ ! 20.0 GeV and with
magnetic moment µχ " 10−17 e cm for which the sound speed
difference is larger than 2%. Accordingly, these models can be
rejected. We find the quantitatively same exclusion limits on the
MDDM parameters even if we use the density profile, rather
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Figure 1. Comparison of the sound speed radial profile between the SSM
(Lopes & Turck-Chieze 2013) and different solar models evolving within an
environment rich in MDDM. The red-green-dotted curve corresponds to the
difference between inverted sound speed profile (Turck-Chieze et al. 1997; Basu
et al. 2009) and our SSM (Turck-Chieze & Lopes 1993; Lopes & Turck-Chieze
2013). The continuous curves correspond to DM particles that have a mass mχ

of 1–20 GeV (blue curve mχ ! 8 GeV, red curve 8 ! mχ ! 12 GeV and cyan
curve mχ " 12 GeV) and a magnetic dipole that takes values from 10−15 e cm
to 10−19 e cm. In the core of the Sun, the variation caused by the presence of
MDDM is much larger that the current sound speed difference between theory
and observation.
(A color version of this figure is available in the online journal.)

The solar models evolving in different MDDM halos are
obtained by a similar procedure to the SSM. Likewise these
models are required to have the observed solar radius and
luminosity at the present age. In our description of the impact
of DM on the evolution of the Sun, we closely follow recent
developments in this field (Cumberbatch et al. 2010; Lopes et al.
2011; Lopes & Silk 2012b, 2012a; Casanellas & Lopes 2013).
A detailed description of how this process is implemented in
our code is discussed in Lopes et al. (2011).

The accumulation of MDDM particles inside the Sun reduces
the temperature in the Sun’s core and, as a consequence, the
sound speed drops, but is compensated for by an increase of
sound speed in the radiative region and the convection zone
(see Figure 1). This results from the fact that these solar models
are required to have a radius and luminosity consistent with
observations. The calibration follows an iterative procedure
identical to the one used to compute the SSM. In principle, we
could use the sound speed and density profiles obtained from
inversion of helioseismology data as a diagnostic tool, however,
we prefer to use the sound speed because only frequencies
of acoustic modes are observed, consequently sound speed
inversion is the more reliable diagnostic method. In the future,
if frequencies of gravity modes are measured with success, the
density profile could become an independent method to probe
the Sun’s core. Figure 1 shows that the sound speed differences
of the solar models computed for different values of mχ and µχ

are quite distinct from the sound speed difference of reference.
This effect is more important for DM particles of relatively low
mass and high magnetic moment. In the case of particles with a
very low mχ , the impact on the sound speed difference profile
becomes insignificant due to the occurrence of DM evaporation.
Although the DM affects the whole internal structure of the star
equally, we focus our analysis on the Sun’s core where the
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Figure 2. Exclusion plot for magnetic dipole DM parameter space (mχ –µχ )
from present day low-Z SSM and helioseismology data. The possible candidates
must lie in the light region, above the iso-contour with 2%. The different isocon-
tour curves represent the maximum difference, i.e., max [(c2

mod − c2
ssm)/c2

ssm] in
the region below 0.3 R⊙—the percentage of the maximum sound difference
between the SSM and the MDDM solar models. The MDDM halo is assumed
to be an isothermal sphere with local density ρχ = 0.38 GeV cm−3, and thermal
velocity (dispersion) vth = 270 km s−1.
(A color version of this figure is available in the online journal.)

direct impact of DM is detected. It is reasonable to consider
that for solar models for which the sound speed difference is
larger than the sound speed difference of the reference model,
or equivalently if this difference is larger than 2%, then these
solar models can be excluded on the basis that they cannot be
accommodated with our current understanding of the physics of
the solar interior. It is true that in the Sun’s deep core the sound
speed difference of the reference solar model still contains a few
uncertainties coming either from an insufficient description of
the physics of the SSM, or poor inversion of the sound speed
profile due to a lack of low degree seismic data. It is believed
that some of the current problems in the SSM are related to
abundances and opacities below the base of the convection zone,
but these localized uncertainties do not affect the core of the
Sun where this diagnostic is done. Moreover, their effect on
the Sun’s structure will be smaller than the observational sound
speed difference. Nevertheless, this uncertainty is at most of the
order of 1.5%. Alternatively, if we choose to use as reference a
high-Z SSM, as the sound speed difference with observations is
of the order of 0.3%, the constraint on the MDDM parameters
could be stronger. Nevertheless, due to the problem related
to the chemical composition in the solar interior (Serenelli
et al. 2011), we take the conservative approach of using the
low-Z SSM which has the largest observational uncertainty as
the reference.

Figure 2 shows the MDDM exclusion plot computed for
different values of mχ and µχ . We choose as diagnostic the
value corresponding to the maximum difference between the
square of the sound speed of the SSM and the sound speed of
the DM solar models. There is a region of the parameter space
for the relatively light DM 4.0 ! mχ ! 20.0 GeV and with
magnetic moment µχ " 10−17 e cm for which the sound speed
difference is larger than 2%. Accordingly, these models can be
rejected. We find the quantitatively same exclusion limits on the
MDDM parameters even if we use the density profile, rather
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ssm is the sound speed of the SSM (e.g., Lopes & Turck-Chieze 2013) and c2

is either c2
obs, the observed sound speed (green-square dots: Turck-Chieze et al.

1997; Basu et al. 2009), or c2
mod, the sound speed of a DMLRI solar model

(continuous curves: [|∆c2| < 2.0%] blue, [2.0 ! |∆c2| ! 4.0%] green, and
[|∆c2| > 4.0%] red). The DMLRI models were computed for the parameters (see
the text): 5 GeV ! mχ ! 20 GeV; 0.1 keV ! mφ ! 1 GeV; and γφ = 10−9.
The black curve corresponds to a fiducial model with mχ = 10 GeV and
mφ = 10 keV. Note that the observational error in cobs is multiplied by a
factor of 10.
(A color version of this figure is available in the online journal.)

YSI can reach even a small value.11 In view of these facts, we
can conclude that this is a good approximation neglecting the
self-capture rate in Equation (5) if kχ ∼ kΩ

χ . Thanks to this
constraint, we can fix kχ = kΩ

χ and directly present the final
results in terms of the kinetic mixing parameter ϵφ = γφ/kΩ

χ .

4. DISCUSSION

The impact of DM in the Sun is studied by inferring the
modifications that DM causes to the Sun’s structure and to the
solar observables. In the following, the SSM (e.g., Turck-Chieze
& Lopes 1993; Lopes 2013) is used as our model of reference,
which predicts solar neutrino fluxes and helioseismology data
consistent with current measurements. The excellent agreement
obtained between theory and observation results from the
combined effort between the fields of helioseismology and
solar modeling, a collaboration extended by several decades,
which lead to a high precision description of physical processes
present inside the Sun (Turck-Chieze & Couvidat 2011; Turck-
Chieze & Lopes 2012). This was very relevant in the case
of the physical processes related with microscopic physics,
including the equation of state, opacities, nuclear reactions rates,
and microscopic diffusion of helium and heavy elements. A
detailed discussion about current predictions of the SSM and
their uncertainties can be found in the literature (e.g., Turck-
Chieze & Lopes 1993; Serenelli et al. 2009; Guzik & Mussack
2010; Turck-Chieze et al. 2010; Lopes & Turck-Chieze 2013;
Lopes 2013; Lopes & Silk 2013).

In Figure 2, we compare the sound speed profile of SSM
with the sound speed computed by an inversion technique from
helioseismology data (Turck-Chieze et al. 1997; Basu et al.
2009). The green square dots correspond to the relative sound
speed difference ∆cobs = (c2

obs − c2
ssm)/c2

ssm, where cssm and cobs
are the sound speed from SSM and helioseismic data. ∆cobs is

11 For example, considering the maximal value of kχ = 1/
√

α ≃ 11.7 allowed
by perturbation theory, we get YSI ≃ 7.5 × 10−4 for the benchmark model.

smaller than 2% throughout the solar interior, above 20% and
below 90% of the Sun’s radius. Although the agreement between
cssm and cobs is very good, a discrepancy remains between the
present SSM and helioseismic data, from which there is no
obvious solution Turck-Chieze & Couvidat (2011). It is worth
noting that the quality of the sound speed inversion is highly
reliable, as most of the helioseismic data has a relative precision
of measurements larger than 10−4. Contrarily, in the Sun’s inner
core below 0.2 R⊙, the seismology data available is quite sparse
and consequently the sound speed inversion is less reliable (see
Figure 2). As pointed out by Turck-Chieze & Couvidat (2011),
the inversion of the sound speed profile in the Sun’s inner core
is limited by the low number of acoustic frequencies measured
(see Table 1 in Turck-Chieze & Lopes 2012 and references
therein), as well as by the weak sensitivity of the eigenfunctions
of global acoustic modes to the structure of the Sun’s core.
This difficulty can only be overcome with the positive detection
of gravity modes. Equally, in the most external layers of the
Sun, the inversion of the sound speed profile is not possible,
mainly due to the fact that the inversion technique breaks down
(acoustic oscillations are no longer adiabatic), as a complex
interaction occurs between convection, magnetic fields, and
acoustic oscillations (Gough 2012; Lopes & Gough 2001).

Accordingly, for the purpose of this study, we choose to
consider the theory–observation uncertainty to be of the order
of 4% rather than 2%. In the remainder of the article, we
will refer to this value as the SSM uncertainty, meaning the
undistinguished uncertainty related to the physical processes of
the SSM or helioseismology sound speed inversion.

The DMLRI solar models were obtained in an identical
manner to the SSM, by adjusting the initial helium Yi and the
mixing length parameter αMLT in such a way that, at the present
age (4.6 Gyr), these solar models reproduced the observed
values of the mass, radius, and luminosity of the Sun, as well
as the observed photospheric abundance ratio (Z/X)⊙, where
X and Z are the mass fraction of hydrogen and the mass fraction
of elements heavier than helium, respectively. Figure 2 shows
a comparison between SSM and different DMLRI models. The
different continuous lines correspond to the squared sound speed
difference ∆c2

mod = (c2
mod − c2

ssm)/c2
ssm where cmod is the sound

speed of DMLRI solar models. These models are obtained for
a fiducial value of γφ = 10−9 and different values of mχ and
mφ . The most important point about Figure 2 is the fact that
there are some DMLRI solar models that can resolve the current
discrepancy with helioseismology data, as ∆c2

mod reproduces the
observed discrepancy ∆c2

obs.
In DMLRI models, the DM impact is most visible in the core

of the star where the DM particles accumulate. However, be-
cause the solar models are required to have the current observed
values of radius and luminosity, a decrease of the production
of nuclear energy in the Sun’s core due to the reduction of the
central temperature (caused by the thermalization of DM with
baryons), is compensated by an increase of the sound speed in
the radiative region. In Figure 2, we show an illustrative DM-
GRI solar model with benchmark parameters: mχ = 10 GeV,
mφ = 10 keV, and γφ = 10−9 (black curve). Moreover, all
of the DMLRI solar models have an identical impact behav-
ior on the solar structure, however, based upon the parameters
mχ and mφ , it is possible to distinguish three sets of models:
(1) DMLRI models for which the squared sound speed differ-
ence is larger than the SSM uncertainty (red curves); (2) DMLRI
models for which the agreement with the helioseismic data is
better than the current SSM (green curves); (3) DMLRI models
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Helioseismology:	DM	parGcles	with	a	mass	of	10	GeV	and	a	long–range	interacGon	with	ordinary	maOer	
mediated	by	a	very	light	mediator	(below	roughly	a	few	MeV),	can	have	an	impact	on	the	Sun’s	sound	
speed	profile	without	violaGng	the	constraints	coming	from	direct	DM	searches.	
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Predic,on:	Solar	models	for	which	the	DM	parGcles	have	a	mass	of	10	GeV	and	the	mediator	a	mass	
smaller	than	1	MeV,	improve	the	agreement	with	helioseismic	data.	

Helioseismology:	DM	parGcles	with	a	mass	of	10	GeV	and	a	long–range	interacGon	with	ordinary	
maOer	mediated	by	a	very	light	mediator	(below	roughly	a	few	MeV),	can	have	an	impact	on	the	Sun’s	
sound	speed	profile	without	violaGng	the	constraints	coming	from	direct	DM	searches.	
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Figure 3. The maximum sound speed difference ∆c2max = max
[

(c2mod − c2ssm)/c2ssm
]

in the full parameter space of DMLRI models

(ϵφ,mχ,mφ) once the constraint kχ = kΩχ (mχ) is imposed. Left panel: Parameter space projected in the (mχ, ϵφ) plane keeping fix
mφ = 10 keV; Central panel: Parameter space in the (mφ, ϵφ) plane considering mχ = 10 GeV; Right panel: Projection of the parameter
space in the (mχ,mφ) plane for a fix γφ = ϵφkΩχ (mχ) = 10−9. In all panels the red(blue) areas individuate the regions of the parameter

space where ∆c2max > 4%(∆c2max < 2%) while those in light green refer to the regions where the agreement with helioseismic data is better
than the SSM (2% < ∆c2max < 4%). All the DMLRI models in the red regions are excluded since they produce a large impact on the Sun’s
core sound speed profile. The DM halo in the Galaxy has been assumed in the form of an isothermal sphere with local energy density
ρ⊙ = 0.38 GeV/cm3 and velocity dispersion v0 = 220 km/s.

In Fig. 2 we compare the sound speed profile of SSM
with the sound speed computed by an inversion technique
from helioseismology data (Turck-Chieze et al. 1997;
Basu et al. 2009). The green square dots correspond
to the relative sound speed difference ∆cobs = (c2obs −
c2ssm)/c

2
ssm, where cssm and cobs are the sound speed from

SSM and helioseismic data. ∆cobs is smaller than 2%
throughout the solar interior, above 20% and below 90%
of the Sun’s radius. Although agreement between cssm
and cobs is very good, a discrepancy remains between the
present SSM and helioseismic data, from which there is
no obvious solution Turck-Chieze & Couvidat (2011). It
is worth noticing that the quality of the sound speed
inversion is highly reliable, as most of the helioseismic
data has a relative precision of measurements larger than
10−4. Contrarily, in the Sun’s inner core below 0.2 R⊙,
the seismology data available is quite sparse and con-
sequently the sound speed inversion is less reliable (cf.
Fig. 2). As pointed out by Turck-Chieze & Couvidat
(2011) the inversion of the sound speed profile in the
Sun’s inner core is limited by the low number acoustic fre-
quencies measured (see Table 1 in Turck-Chieze & Lopes
(2012) and references therein), as well as by the weak
sensitivity of the eigenfunctions of global acoustic modes
to the structure of the Sun’s core. This difficulty can
only be overcome with the positive detection of grav-
ity modes. Equally, in the most external layers of the
Sun, the inversion of the sound speed profile is not pos-
sible, mainly due to the fact that the inversion tech-
nique breaks down (acoustic oscillations are no-longer
adiabatic), as a complex interaction occurs between con-
vection, magnetic fields and acoustic oscillations (Gough
2012; Lopes & Gough 2001).
Accordingly, for the purpose of this study, we choose

to consider the theory-observation uncertainty to be of
the order of 4% rather than 2%. In the remainder of the
article we will refer to this value as the SSM uncertainty,
meaning the undistinguished uncertainty related to the
physical processes of the SSM or helioseismogy sound
speed inversion.

The DMLRI solar models were obtained in an identi-
cal manner to the SSM, by adjusting the initial helium
Yi and the mixing length parameter αMLT in such a way
that at the present age (4.6 Gyear), these solar mod-
els reproduced the observed values of the mass, radius
and luminosity of the Sun, as well as the observed pho-
tospheric abundance ratio (Z/X)⊙, where X and Z are
the mass fraction of hydrogen and the mass fraction of el-
ements heavier than helium, respectively. Fig. 2 shows a
comparison between SSM and different DMLRI models.
The different continuous lines correspond to the squared
sound speed difference∆c2mod = (c2mod−c2ssm)/c

2
ssm where

cmod is the sound speed of DMLRI solar models. These
models are obtained for a fiducial value of γφ = 10−9 and
different values ofmχ andmφ. The most important point
about Fig. 2 is the fact that there are some DMLRI so-
lar models that can resolve the current discrepancy with
helioseismology data, as ∆c2mod reproduces the observed
discrepancy ∆c2obs.
In DMLRI models, the DM impact is most visible in

the core of the star where the DM particles accumulate.
However, because the solar models are required to have
the current observed values of radius and luminosity, a
decrease of the production of nuclear energy in the Sun’s
core due to the reduction of the central temperature
(caused by the thermalisation of DM with baryons), is
compensated by an increase of the sound speed in the ra-
diative region. In Fig. 2 we show an illustrative DMGRI
solar model with benchmark parameters: mχ = 10 GeV,
mφ = 10 keV and γφ = 10−9 (black curve). Moreover,
all the DMLRI solar models have an identical impact be-
haviour on the solar structure, however, based upon the
parameters mχ and mφ it is possible to distinguish three
sets of models: i) DMLRI models for which the squared
sound speed difference is larger than the SSM uncertainty
(red curves); ii) DMLRI models for which the agreement
with the helioseismic data is better than the current SSM
(green curves); iii) DMLRI models for which the squared
sound speed difference is smaller than the SSM uncer-
tainty (blue curves). Although, there is a large set of

“Constraint	on	Light	Dipole	Dark	Ma;er	from	
Helioseismology”,	Lopes,	Kadota	&	Silk	,	ApJ	
LeOers	2014)	

Helioseismology	with	Long	Range		Dark	Ma;er	
Baryon	InteracBon	”,	Lopes,	Panci	&	Silk,	ApJ	
2014)	

(c2dm-c2ssm)/c2ssm	~	

(c2obs-	c2ssm)c2ssm	≈		4%	-	3	%		
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Helioseismology:	 	Asymmetric	dark	maOer	coupling	to	nucleons	as	the	square	of	the	momentum	q	exchanged	in	the	collision.	
Agreement	with	sound	speed	profiles,	neutrino	fluxes,	small	frequency	separaGons,	surface	helium	abundances,	and	convecGve	
zone	depths	for	a	number	of	models.	The	best	model	correspond	to	a	dark	maOer	parGcle	with	a	mass	3	GeV	and	reference	dark	
maOer-nucleon	 cross-secGon	 (10−37	 cm2	 at	 q0	 =	 40	 MeV)	 are	 within	 the	 region	 of	 parameter	 space	 allowed	 by	 both	 direct	
detecGon	and	collider	searches.	

	
	 (A.	Vincent	et.	al.		2015)	
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2

used seismic diagnostic, the depth of the solar convective
envelope RCZ , is determined by the temperature gradient
immediately below the convective envelope. In our DM
models, the gradient in this region is slightly steeper than
in the Standard Solar Model (SSM), leading to a mod-
est but measurable deepening of the convective envelope.
The lower core temperature leads to lower nuclear fusion
rates, which must be compensated for by increasing the
hydrogen abundance so that the integrated nuclear en-
ergy release accounts for L�. The initial helium mass
fraction and the present day surface value Ys are thus
lower in models where DM contributes to energy trans-
port. In general, helioseismic diagnostics are a↵ected by
changes in temperature (T ), mean molecular weight (µ̄),
and their gradients, as the solar sound speed varies as
�cs/cs ⇡ 1

2�T/T � 1
2�µ̄/µ̄ (neglecting here a small term

from variation of the adiabatic index �1). If ⌫n,` is the
frequency corresponding to the eigenmode of radial or-
der n and angular degree `, then the so-called frequency
ratios

r0,2 =
⌫n,0 � ⌫n�1,2

⌫n,1 � ⌫n�1,1
and r1,3 =

⌫n,1 � ⌫n�1,3

⌫n+1,0 � ⌫n,0
, (2)

are given by

r`,`+2(n) ⇡ �(4`+ 6)
1

4⇡2
⌫n,`

Z R�

0

dcs

dR

dR

R

, (3)

for n � 1. These are weighted towards the core, so give
information on the central region of the Sun [17]. In
this work we use solar data from BiSON [18], from which
ratios can be computed for n > 8.

The major technical advance here over earlier work
[7, 8, 13] is that we compute solar models using an ac-
curate treatment of energy transport and solar capture
by momentum-dependent DM-nucleon interactions. The
correct transport treatment is quite involved [19]. The
capture rate of q2-dependent DM by the Sun is [20]

C�(t) = 4⇡
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where R� is the solar radius, m� the DM mass, vesc(R, t)
the local escape speed at height R in the Sun, f�(u)
the distribution of halo DM particle speeds u in the so-
lar frame, w ⌘

p
u

2 + v

2
esc, �N,i and ni are the DM-

nucleus scattering cross-section and local number den-
sity respectively for nuclear species i, µi ⌘ m�/mN,i,
µi,± ⌘ (µi ± 1)/2, and IFF is the form factor integral.
For hydrogen,
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FIG. 1. Deviation of the radial sound speed profile (Sun �
model)/Sun in the solar interior from the values inferred
from helioseismological data, for the Standard Solar Model
(SSM) and three models of asymmetric dark matter (ADM).
Coloured regions indicate 1 and 2� errors in modelling (thick
blue band) and on helioseismological inversions [23] (thinner
green band). The combination (m�,���nuc) for each model
is chosen to give the best overall improvement with respect
to the SSM.

For heavier elements, assuming a Helm form factor gives
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with �(m,x) the upper incomplete gamma function.
Here Bi ⌘ 1

2m�w
2
/Ei, where Ei is a constant given in

[15] for each nuclear species.
Simulations of q

2 ADM in the Sun.— To study
the impact of q2 ADM on solar observables, we merged
the solar structure and dark stellar evolution codes
GARSTEC [5, 21] and DarkStars [22], then implemented
momentum-dependent transfer as per [19] and capture
as in Eq. (4), creating a precision dark solar evolution
package DarkStec. We computed solar models matching
(Z/X)�, R� and L� at the solar age t� over a grid of
ADM masses and cross-sections �0, for regular SI and
SD (spin-dependent) ADM, as well as q

2 momentum-
dependent SI ADM. We assumed passage of the Sun
at 220 km s�1 through a standard Maxwell-Boltzmann
halo with velocity dispersion 270 km s�1 and local DM
density 0.38GeV cm�3. On the basis of the observed
8B and 7Be neutrino fluxes, depth of the convection
zone, surface helium fraction and sound speed profile,
we selected the best-fit model within each of these grids:
for {SD, SI, q

2 SI} models, m� = {5, 5, 3}GeV and
�0 = {10�36

, 10�34
, 10�37} cm2.

In Fig. 1 we compare the sound speed profile predicted
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² 'Asteroseismology	of	Kepler	stars:	a	study	of	the	outer	
layers',		Ana	Brito,	Ilidio	Lopes	

² Asking	stars	about	Dark	MaOer’,	

						Andre	MarGns,	Jordi	Casanellas,	Ilidio	Lopes	

² 'The	Sun	as	a	detector	for	dark	maOer’,	

							Jose	Lopes,	Ilidio	Lopes	



Stars	as	GravitaGonal	Waves	Detectors	
	Gravity . Stellar seismology  

 



Gμν=	Tμνsp	+	TμνDM	+	TμνDE	
Gμν	-	Einstein	tensor	describing	the	curvature	of	
space-Gme	(and	hence	the	effect	of	gravity)		

	

Tμνsp	–	standard	parGcles	(baryons,	electrons,	
photons	and	neutrinos)		

Einstein’s	Equa,on	(ignoring	constants):	

	

	Stars	as	gravitaGonal	waves	detectors	

•  GWs	a	new	window	to	understand	the	Universe	--	the	formaGon	of	structure	and	
galaxies,	stellar	evoluGon,	the	early	universe,	and	the	structure	and	nature	of	spaceGme	
itself	(e.g.,	Gair	et	al.	2013;	Sathyaprakash	&	Schutz	2009).		

GravitaGonal	waves	are	generated	in	many	astrophysical	systems	like	binary	systems	of	
Black	holes,	neutron	stars	and	white	dwarfs.		
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	GravitaGonal	waves	detectors	and	sources	

The	rapid	development	of	gravitaGonal	wave	(GW)	detecGon	either	
by	resonant	mass	detectors	or	ground-based	and	space	
interferometers	gives	us	hope	that	GW	observaGons	will	very	soon	
become	a	reality	(EPTA,	SKA,	eLISA,	aLigo).		

Moore	et	al.	2014	
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	GravitaGonal	waves	detectors	and	sources	

Moore	et	al.	2014	

Current	GW	models	predict	waves	with	frequencies	from	10-10	t0	106	Hz	and	amplitude	of	the	order	
of	10-18.	

The	strain	h	is	given	by	the	raGo	
ΔL/L,	accordingly,	for	h=ΔL/L=10-18	
a	bar	with	a	length	L=1	m	has	
ΔL=10-18	m	or	L=10	Km		has	
ΔL=10-14	m	(radius	of	a	proton	
(fermi)	~	10-15	m).							

However,	if	L=7	108	m	(solar	radius)	ΔL=10-18	×7	108		=7	10-10		m.		

Equally,	L=20	×	7	108	m	(red	giant	radius),	ΔL=20	×7	10-10		=1.4	10-8		m.		
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Preliminary	studies:		
-  The	idea	that	gravitaGonal	radiaGon	could	excite	the	normal	modes	of	vibraGon	of	celesGal	
bodies	such	as	the	Earth	and	the	Sun	was	originally	discussed	by	Dyson	(Dyson	1969).	More	
recently,	other	authors	have	followed	up	this	idea	(e.g.,	Dyson1969;	Zimmerman	&	Hellings	
1980;	Boughn	&	Kuhn	1984;	Khosroshahi	&	SobouG	1997).		

-  Boughn	&	Kuhn	(1984)	were	the	first	to	compute	the	impact	of	GW	on	solar	gravity	and	
acousGc	modes,	for	which	they	also	put	upper	limits	on	the	stochasGc	gravitaGonal	
background	from	the	observed	solar	oscillaGons.	Recently	this	results	have	been		update	by	
Siegel	&	Roth	(2011-2014).	

-  McKernan	et	al.	(2014)	esGmate	the	gravitaGonal	radiaGon	that	is	absorbed	by	stars;	In	
parGcular,	they	found	that	stars	near	massive	black	hole	binaries	(MBHB)	can	act	as	GW-
charged	baOeries,	cooling	radiaGvely.		

28	
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The	Sun,	as	is	the	case	for	many	other	stars,	is	a	
natural	massive	GW	detector	with	an	isotropic	
sensiGvity	to	GWs	–	able	to	absorb	GWs	from	any	
direcGon	of	the	sky.	
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	GravitaGonal	waves	excitaGon	of	acousGc	modes		

Stellar	oscillaGons	in	stars	(e.g.,	Chaplin	et	al.	2005)	

Lopes	&	Silk	(ApJ	2014,	794	,	32)	

•  In	a	Galilean	coordinate	reference	frame,	whose	origin	coincides	with	the	center	of	the	star,	the	
stellar	material	experiences	a	“Newtonian	force”	proporGonal	to	the	perturbaGve		space	(-Gme)	
metric	tensor	hij	(Misner	et	al.	1973).	

•  Only,	quadrupole	modes	of	vibraGon	of	the	star	(l=2,	m=0,±	1,	±	2)	will	be	excited	by	gravitaGonal	
waves	when	the	frequency	of	the	incoming	GW	is	close	to	the	eigenfrequency	of	the	mode.	

The Astrophysical Journal, 794:32 (7pp), 2014 October 10 Lopes & Silk

A complementary approach was performed recently (McKernan
et al. 2014) in which the authors estimated that gravitational
radiation that is absorbed by stars near black holes, and discuss
how the absorption by the Sun of GWs from Galactic white
dwarf binaries could be observed by a second generation of
gravitational wave detectors.

Here, we show that GWs with a strain spectral amplitude
of 10−20h−20 with h−20 ! 1 can lead to the excitation of low
order quadrupole acoustic modes in the Sun, for which the rms
surface velocity amplitudes could be as large as ∼ h−20 cm s−1.
These results use theoretical predictions of damping rates of
acoustic modes consistent with current solar observations at
high frequencies. Moreover, we discuss the strategy to search
for GW events in stellar oscillations. Our theoretical model
closely follows the GW model of resonant mass detectors. This
approach facilitates the use of our work by the GW experimental
community.

2. GRAVITATIONAL WAVES AND
STELLAR OSCILLATIONS

In the presence of GWs, stars behave like resonant-mass
spherical detectors. Accordingly, the oscillations of a star
equally excited by convection and GWs can be accurately
represented by the simplified wave equation (e.g., Chaplin et al.
2005; Samadi & Goupil 2001; Lopes 2001; Cox 1980):

∂2ξ

∂t2
+ 2ηN

∂ξ

∂t
+ Lξ = 1

ρ
Fconv + Fgw (1)

for the displacement ξ (r, t) of a forced oscillation corresponding
to a mode N. In this equation, all the terms homogeneous in ξ
have been put on the left-hand side, and the fluctuating terms
arising from stochastic excitation by turbulent convection Fconv
or by GW perturbations Fgw are on the right-hand side. ωN

corresponds to the frequency of the mode N and ρ is the density
of the star in equilibrium.6 Although to compute the excitation,
damping, and propagation of acoustic and gravity waves inside
stars it is necessary to resolve the full set of hydrodynamic
equations, in the Sun and identical stars, the acoustic modes
of oscillation are well represented by the linearized pulsation
dynamics as described by the wave equation (1). This equation
has been very successful in explaining the solar and stellar
observational data (Chaplin et al. 2005).

The pulsation variations of the fluid caused by momentum
and heat are included in the damping rate ηN and the linear
spatial differential operator L (Unno et al. 1989). Moreover,
these quantities are chosen in such a way that both the frequency
ωN and eigenfunctions ξN (r) of the homogeneous equation

LξN = ω2
N ξN (2)

are real. The set of eigenfunctions ξN can be shown to be orthog-
onal and form a complete set (e.g., Aizenman & Smeyers 1977).
In particular ξN has two eigenfunction components ξr,N(r) and
ξh,N(r), the radial and horizontal surface displacements.

As already stated, we include as a source of excitation those
fluctuations arising from turbulent convection Fconv(r, t) which

6 N ≡ nlm, where n, l, and m are the order, degree, and azimuthal order of
the mode. In particular, n is a positive integer that relates with the number of
nodes of ξr(r). As usual for modes with fixed l, n = 0 is called the f-mode and
n ! 1 are the pn modes. See Unno et al. (1989) for details. In the remainder of
the paper, if not stated otherwise, N ≡ n2m, where m can be any integer such
that |m| " 2.

have been widely reported in the literature (e.g., Goldreich &
Keeley 1977; Goldreich et al. 1994; Belkacem et al. 2008), and
Fgw(r, t) is the driving force related to GW fluctuations of the
spacetime continuum7 where the star is located (Misner et al.
1973). Fgw(r, t) has the components

[Fgw]i = 1/2 ḧij x
j . (3)

xj are the spatial coordinates of index j and ḧij is the second
time derivative of the tensor hij. As usual, hij is the spatial part
of the tensor hαβ that describes a small perturbation relative to
a flat spacetime universe (Minkowski space). Moreover, the hij
deviation from a flat spacetime is solely attributed to GWs, for
which the effects of curvature is neglected due to the mass of
the star (e.g., Schutz 2009).

Adopting a standard procedure of normal analysis (e.g., Unno
et al. 1989), we choose to represent any perturbation described
by Equation (1) as a combination of the eigenfunctions such that
ξN (r, t) = A(t)ξN (r) e−iωNt , where A(t) is the instantaneous
amplitude of the mode (Chaplin et al. 2005; Belkacem et al.
2008). In ξN (r, t) we do not show the term related to the
contribution of the temporal phase variation in the argument
of e−iωNt , as this quantity is negligible for the formation of
standing acoustic waves (Chaplin et al. 2005). Equally, the
complex conjugate is also not represented as this quantity is
not relevant for our analysis (Samadi & Goupil 2001). This
approximation is valid for modes for which the energy exchange
between the stellar turbulent convection and the oscillations
occurs in a timescale that is much longer than the oscillation
period, i.e., ηN ≪ ωN as is the case with acoustic modes. This
result has been shown to be valid for current solar and stellar
acoustic oscillations. By substituting this form of ξN (r, t) into
Equation (1), multiplying both members by ξ ∗

N (the complex
conjugate of ξN ,8) integrating this equation for the total mass
of the star and keeping only the leading terms, the equation
reduces to

d2A

dt2
+ 2ηN

dA

dt
+ ω2

NA = Sconv(t) + δl
2 Sgw(t), (4)

where δl
2 is the Kronecker tensor. Wave motion is a complex

process with many second order terms. Fortunately, these are
very small when comparing with the leading terms, Sconv(t)
or Sgw(t). Accordingly, the amplitudes of acoustic oscillations
correspond to the solution of a damping harmonic oscillator as
described by the previous equation. A detailed account of the
nature of the second order terms neglected in this computation
can be found in Chaplin et al. (2005).

Sconv and Sgw are respectively the excitation source terms
related to turbulent convection and GWs. Sgw reads

Sgw(t) = 1
I

∫ R

0
Fgw · ξ ∗

N ρr2dr, (5)

where R is the radius of the star and I is the mode inertia. I is
an arbitrary constant which we choose to be equal to the mode
of inertia, as is usually done in the theory of stellar oscillations
(e.g., Aerts et al. 2010). I is given by

I = 4π

∫ R

0
ξN · ξ ∗

N ρr2dr. (6)

7 Einstein notation. The Greek and Latin indices describe the coordinates in
the spacetime manifold (0, 1, 2, 3) and spatial coordinates (1, 2, 3).
8 If not stated otherwise, throughout the remainder of article ξN will always
refer to ξN (r).

2

The Astrophysical Journal, 794:32 (7pp), 2014 October 10 Lopes & Silk

A complementary approach was performed recently (McKernan
et al. 2014) in which the authors estimated that gravitational
radiation that is absorbed by stars near black holes, and discuss
how the absorption by the Sun of GWs from Galactic white
dwarf binaries could be observed by a second generation of
gravitational wave detectors.

Here, we show that GWs with a strain spectral amplitude
of 10−20h−20 with h−20 ! 1 can lead to the excitation of low
order quadrupole acoustic modes in the Sun, for which the rms
surface velocity amplitudes could be as large as ∼ h−20 cm s−1.
These results use theoretical predictions of damping rates of
acoustic modes consistent with current solar observations at
high frequencies. Moreover, we discuss the strategy to search
for GW events in stellar oscillations. Our theoretical model
closely follows the GW model of resonant mass detectors. This
approach facilitates the use of our work by the GW experimental
community.

2. GRAVITATIONAL WAVES AND
STELLAR OSCILLATIONS

In the presence of GWs, stars behave like resonant-mass
spherical detectors. Accordingly, the oscillations of a star
equally excited by convection and GWs can be accurately
represented by the simplified wave equation (e.g., Chaplin et al.
2005; Samadi & Goupil 2001; Lopes 2001; Cox 1980):

∂2ξ

∂t2
+ 2ηN

∂ξ

∂t
+ Lξ = 1

ρ
Fconv + Fgw (1)

for the displacement ξ (r, t) of a forced oscillation corresponding
to a mode N. In this equation, all the terms homogeneous in ξ
have been put on the left-hand side, and the fluctuating terms
arising from stochastic excitation by turbulent convection Fconv
or by GW perturbations Fgw are on the right-hand side. ωN

corresponds to the frequency of the mode N and ρ is the density
of the star in equilibrium.6 Although to compute the excitation,
damping, and propagation of acoustic and gravity waves inside
stars it is necessary to resolve the full set of hydrodynamic
equations, in the Sun and identical stars, the acoustic modes
of oscillation are well represented by the linearized pulsation
dynamics as described by the wave equation (1). This equation
has been very successful in explaining the solar and stellar
observational data (Chaplin et al. 2005).

The pulsation variations of the fluid caused by momentum
and heat are included in the damping rate ηN and the linear
spatial differential operator L (Unno et al. 1989). Moreover,
these quantities are chosen in such a way that both the frequency
ωN and eigenfunctions ξN (r) of the homogeneous equation

LξN = ω2
N ξN (2)

are real. The set of eigenfunctions ξN can be shown to be orthog-
onal and form a complete set (e.g., Aizenman & Smeyers 1977).
In particular ξN has two eigenfunction components ξr,N(r) and
ξh,N(r), the radial and horizontal surface displacements.

As already stated, we include as a source of excitation those
fluctuations arising from turbulent convection Fconv(r, t) which

6 N ≡ nlm, where n, l, and m are the order, degree, and azimuthal order of
the mode. In particular, n is a positive integer that relates with the number of
nodes of ξr(r). As usual for modes with fixed l, n = 0 is called the f-mode and
n ! 1 are the pn modes. See Unno et al. (1989) for details. In the remainder of
the paper, if not stated otherwise, N ≡ n2m, where m can be any integer such
that |m| " 2.

have been widely reported in the literature (e.g., Goldreich &
Keeley 1977; Goldreich et al. 1994; Belkacem et al. 2008), and
Fgw(r, t) is the driving force related to GW fluctuations of the
spacetime continuum7 where the star is located (Misner et al.
1973). Fgw(r, t) has the components

[Fgw]i = 1/2 ḧij x
j . (3)

xj are the spatial coordinates of index j and ḧij is the second
time derivative of the tensor hij. As usual, hij is the spatial part
of the tensor hαβ that describes a small perturbation relative to
a flat spacetime universe (Minkowski space). Moreover, the hij
deviation from a flat spacetime is solely attributed to GWs, for
which the effects of curvature is neglected due to the mass of
the star (e.g., Schutz 2009).

Adopting a standard procedure of normal analysis (e.g., Unno
et al. 1989), we choose to represent any perturbation described
by Equation (1) as a combination of the eigenfunctions such that
ξN (r, t) = A(t)ξN (r) e−iωNt , where A(t) is the instantaneous
amplitude of the mode (Chaplin et al. 2005; Belkacem et al.
2008). In ξN (r, t) we do not show the term related to the
contribution of the temporal phase variation in the argument
of e−iωNt , as this quantity is negligible for the formation of
standing acoustic waves (Chaplin et al. 2005). Equally, the
complex conjugate is also not represented as this quantity is
not relevant for our analysis (Samadi & Goupil 2001). This
approximation is valid for modes for which the energy exchange
between the stellar turbulent convection and the oscillations
occurs in a timescale that is much longer than the oscillation
period, i.e., ηN ≪ ωN as is the case with acoustic modes. This
result has been shown to be valid for current solar and stellar
acoustic oscillations. By substituting this form of ξN (r, t) into
Equation (1), multiplying both members by ξ ∗

N (the complex
conjugate of ξN ,8) integrating this equation for the total mass
of the star and keeping only the leading terms, the equation
reduces to

d2A

dt2
+ 2ηN

dA

dt
+ ω2

NA = Sconv(t) + δl
2 Sgw(t), (4)

where δl
2 is the Kronecker tensor. Wave motion is a complex

process with many second order terms. Fortunately, these are
very small when comparing with the leading terms, Sconv(t)
or Sgw(t). Accordingly, the amplitudes of acoustic oscillations
correspond to the solution of a damping harmonic oscillator as
described by the previous equation. A detailed account of the
nature of the second order terms neglected in this computation
can be found in Chaplin et al. (2005).

Sconv and Sgw are respectively the excitation source terms
related to turbulent convection and GWs. Sgw reads

Sgw(t) = 1
I

∫ R

0
Fgw · ξ ∗

N ρr2dr, (5)

where R is the radius of the star and I is the mode inertia. I is
an arbitrary constant which we choose to be equal to the mode
of inertia, as is usually done in the theory of stellar oscillations
(e.g., Aerts et al. 2010). I is given by

I = 4π

∫ R

0
ξN · ξ ∗

N ρr2dr. (6)

7 Einstein notation. The Greek and Latin indices describe the coordinates in
the spacetime manifold (0, 1, 2, 3) and spatial coordinates (1, 2, 3).
8 If not stated otherwise, throughout the remainder of article ξN will always
refer to ξN (r).
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•  Vn	–	maximum	amplitude	of	the	photospheric	velocity		

•  AcousGc	mode	(asteroseismology):	frequency	ωn	and	damping	rate	μn	

•  GravitaGonal	wave	(monochromaGc):	frequency	ω	(~ωn	)	and	strain	h*		

•  Ln		–	“modal		length”		(sensiGvity	of	the		acousGc	mode	to	the	gravitaGonal	wave)	

Lopes	&	Silk	(ApJ	2014)	
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V2
n(ω) =

(

h⋆Ln
αs

)2 ω6

(ω2 −ω2
n)

2 + 4η2
nω

2
(A1)

where γs is an additional parameter (dimensionless and of the order of unity), that relates to the surface layer where
the velocity measurement is made.

Vn(ωn) =
h⋆Ln
αs

ω2
n

ηn
(A2)

Ln = 1/2 R χn (A3)

where R is the radius of the star, χn is the coefficient that determines the efficiency of a mode of order n to be excited
by GWs. χn reads

χn =
3

4πρ̄⋆

∫1
0
ρ(r) [ξr,n2(z) + 3ξh,n2(z)] r

3dr. (A4)
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Fig. 1.— This figure shows the modulus χn coefficients for acous-
tic quadrupole (l = 2) modes of radial order n, from 0 up to 18.
The values of χn coefficients were computed for the current SSM.
The numerical values are shown in Table 1.

of acoustic oscillations correspond to the solution of a
damping harmonic oscillator as described by the previ-
ous equation. A detailed account about the nature of the
second order terms neglected in this computation can be
found in Chaplin et al. (2005).
Sconv and Sgw are respectively the excitation source

terms related with turbulent convection and GWs. Sgw
reads

Sgw(t) =
1

I

∫R
0
Fgw · ξ∗

N ρr2dr, (5)

where R is the radius of the star and I is the mode inertia.
I is an arbitrary constant which we choose to be equal
to the mode of inertia, as is usually done in the theory
of stellar oscillations (e.g., Aerts et al. 2010). I is given
by

I = 4π

∫R
0
ξN · ξ∗

N ρr2dr. (6)

It is convenient to introduce MN, the so-called modal
mass; thus MN = I/ζ where ζ ≡ ξ2r,N(R) + 6ξ2h,N(R).
In the eventuality of such a star having been perturbed

by a passing GW, the response will be somehow identi-
cal to a tidal perturbation produced by a nearby object
on the stellar modes. Following from the specific prop-
erties of gravitational systems as demonstrated in gen-
eral relativity (Maggiore 2008), GW perturbations only
have modes with l ! 2. For convenience, we opt to
study the leading order of the GW perturbation, i.e., the
quadrupole modes (l = 2). This is the reason why we
have introduced δl2 in equation (4).
Equation (5) can be written in a more convenient form

by using equations (3) and (6) for which Sgw(t) reads

Sgw(t) = Ln ḧm(t) (7)

where Ln is the effective length that measures the sensi-
tivity of a mode of order n to a GW perturbation and hm
are the spherical components of hij for which the m (az-
imuthal order) take one of the following integer values:

TABLE 1
Quadrupole acoustic modes (l = 2)

Observational data and Standard solar model

n Freq. [obs] a Freq. [th] χn |Ln| Vs,gw

(µHz) (µHz) (cm) (cm s−1).
×10−4 ×107 ×h−2010−6

f − 347.10 −6.7432 2.347 0.1884
p1 − 382.26 −11.038 3.841 0.2673
p2 − 514.48 +2.1193 0.737 0.0169
p3 − 664.06 −0.6286 0.219 0.0018
p4 − 811.33 +0.2133 0.074 0.0003

×10−6 ×105 ×h−2010−10

p5 − 959.23 −8.2377 2.867 0.4484
p6 − 1104.28 +3.4804 1.211 0.0932
p7 − 1249.78 −1.5051 0.524 0.0201
p8 1394.68 ± 0.01 1393.68 +0.6836 0.238 0.0045
p9 1535.865 ± 0.006 1535.08 −0.3109 0.108 0.0008

×10−8 ×104 ×h−2010−15

p10 1674.534 ± 0.013 1673.80 +14.946 1.082 22.670
p11 1810.349 ± 0.015 1809.40 −7.8242 0.520 7.7200
p12 1945.800 ± 0.02 1944.90 +4.3862 0.272 3.1720
p13 2082.150 ± 0.02 2081.10 −2.5981 0.153 0.1413
p14 2217.69 ± 0.03 2217.00 +1.5564 0.054 0.7951
p15 2352.29 ± 0.03 2352.30 −0.9562 0.033 0.4891
p16 2485.86 ± 0.03 2486.60 +0.6204 0.022 0.3085
p17 2619.64 ± 0.04 2621.20 −0.4180 0.014 0.1851
p18 2754.39 ± 0.04 2756.90 +0.2908 0.010 0.1275

aThe observational frequency table is obtained from a compilation
made by Turck-Chieze & Lopes (2012), after the observations of
Bertello et al. (2000); Garcia et al. (2001); Turck-Chieze et al.
(2004); Jimenez & Garcia (2009). The strain h−20 take values of
1 to 103.

−2,−1, 0, 1, 2. Ln is given by

Ln = 1/2 R χn (8)

where R is the radius of the star, χn is the coefficient
that determines the efficiency of a mode of order n to be
excited by GWs. χn reads

χn =
3

4πρ̄⋆

∫1
0
ρ(r) [ξr,n2(z) + 3ξh,n2(z)] r

3dr. (9)

In the computation of equation (7), as is usually done, we
arbitrarily normalized the eigenfunctions to the average
density of the star ρ̄⋆, such that I ≡ (4π/3)R3ρ̄⋆. In the
case of the Sun, ρ̄⋆ is approximately 1.4 g cm−3. Equa-
tion (9) is identical to others found in the literature, as
by Boughn & Kuhn (1984) and more recently by Siegel &
Roth (2011), χn differ among these works only by the ar-
bitrary normalization condition. Nevertheless, this the-
oretical model is developed in a similar manner to the
one used for resonant mass detectors. Thus, equation
(4) in which the Sconv(t) is neglected and ρ̄⋆ is consid-
ered constant, becomes equivalent to the one found for a
spherical resonant-mass detector (e.g., Maggiore 2008).
This is the motivation for us to choose a normalization
for χn that is identical to the one done for GW resonant-
mass detectors.
Figure 1 and Table 1 show the χn coefficients com-

puted for the standard solar model (SSM: Turck-Chieze
& Lopes 1993) with a stellar structure in very good agree-
ment with helioseismology data. The difference between
theoretical and observational frequencies is smaller than
0.1% (cf. Table 1). This solar model was computed using
a modified version of the Cesam code (Morel 1997) for

•  For	instance,	the	largest	of	the	|χn|	coefficients,	|χ1|	has	a	value	of	0.0011	for	the	Sun	and	0.328	in	the	
case	of	a	resonant	sphere	(Maggiore	2008).		

•  |Ln|	takes	values	from	107	cm	(n	=	0)	to	100	cm	(n	=	18).	

•  Quadrupole	gravity	modes	(in	the	Sun)	with	larger	|χn|		are	also	potenGal	GW	probes	(Siegel	&	Roth	
2011),	although	the	damping	mechanism	of	these	waves	is	poorly	known.		

Internal	Physics	of	the	Star:			

Ln		–	“modal		length”		
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Fig. 1.— This figure shows the modulus χn coefficients for acous-
tic quadrupole (l = 2) modes of radial order n, from 0 up to 18.
The values of χn coefficients were computed for the current SSM.
The numerical values are shown in Table 1.

of acoustic oscillations correspond to the solution of a
damping harmonic oscillator as described by the previ-
ous equation. A detailed account about the nature of the
second order terms neglected in this computation can be
found in Chaplin et al. (2005).
Sconv and Sgw are respectively the excitation source

terms related with turbulent convection and GWs. Sgw
reads

Sgw(t) =
1

I

∫R
0
Fgw · ξ∗

N ρr2dr, (5)

where R is the radius of the star and I is the mode inertia.
I is an arbitrary constant which we choose to be equal
to the mode of inertia, as is usually done in the theory
of stellar oscillations (e.g., Aerts et al. 2010). I is given
by

I = 4π

∫R
0
ξN · ξ∗

N ρr2dr. (6)

It is convenient to introduce MN, the so-called modal
mass; thus MN = I/ζ where ζ ≡ ξ2r,N(R) + 6ξ2h,N(R).
In the eventuality of such a star having been perturbed

by a passing GW, the response will be somehow identi-
cal to a tidal perturbation produced by a nearby object
on the stellar modes. Following from the specific prop-
erties of gravitational systems as demonstrated in gen-
eral relativity (Maggiore 2008), GW perturbations only
have modes with l ! 2. For convenience, we opt to
study the leading order of the GW perturbation, i.e., the
quadrupole modes (l = 2). This is the reason why we
have introduced δl2 in equation (4).
Equation (5) can be written in a more convenient form

by using equations (3) and (6) for which Sgw(t) reads

Sgw(t) = Ln ḧm(t) (7)

where Ln is the effective length that measures the sensi-
tivity of a mode of order n to a GW perturbation and hm
are the spherical components of hij for which the m (az-
imuthal order) take one of the following integer values:

TABLE 1
Quadrupole acoustic modes (l = 2)

Observational data and Standard solar model

n Freq. [obs] a Freq. [th] χn |Ln| Vs,gw

(µHz) (µHz) (cm) (cm s−1).
×10−4 ×107 ×h−2010−6

f − 347.10 −6.7432 2.347 0.1884
p1 − 382.26 −11.038 3.841 0.2673
p2 − 514.48 +2.1193 0.737 0.0169
p3 − 664.06 −0.6286 0.219 0.0018
p4 − 811.33 +0.2133 0.074 0.0003

×10−6 ×105 ×h−2010−10

p5 − 959.23 −8.2377 2.867 0.4484
p6 − 1104.28 +3.4804 1.211 0.0932
p7 − 1249.78 −1.5051 0.524 0.0201
p8 1394.68 ± 0.01 1393.68 +0.6836 0.238 0.0045
p9 1535.865 ± 0.006 1535.08 −0.3109 0.108 0.0008

×10−8 ×104 ×h−2010−15

p10 1674.534 ± 0.013 1673.80 +14.946 1.082 22.670
p11 1810.349 ± 0.015 1809.40 −7.8242 0.520 7.7200
p12 1945.800 ± 0.02 1944.90 +4.3862 0.272 3.1720
p13 2082.150 ± 0.02 2081.10 −2.5981 0.153 0.1413
p14 2217.69 ± 0.03 2217.00 +1.5564 0.054 0.7951
p15 2352.29 ± 0.03 2352.30 −0.9562 0.033 0.4891
p16 2485.86 ± 0.03 2486.60 +0.6204 0.022 0.3085
p17 2619.64 ± 0.04 2621.20 −0.4180 0.014 0.1851
p18 2754.39 ± 0.04 2756.90 +0.2908 0.010 0.1275

aThe observational frequency table is obtained from a compilation
made by Turck-Chieze & Lopes (2012), after the observations of
Bertello et al. (2000); Garcia et al. (2001); Turck-Chieze et al.
(2004); Jimenez & Garcia (2009). The strain h−20 take values of
1 to 103.

−2,−1, 0, 1, 2. Ln is given by

Ln = 1/2 R χn (8)

where R is the radius of the star, χn is the coefficient
that determines the efficiency of a mode of order n to be
excited by GWs. χn reads

χn =
3

4πρ̄⋆

∫1
0
ρ(r) [ξr,n2(z) + 3ξh,n2(z)] r

3dr. (9)

In the computation of equation (7), as is usually done, we
arbitrarily normalized the eigenfunctions to the average
density of the star ρ̄⋆, such that I ≡ (4π/3)R3ρ̄⋆. In the
case of the Sun, ρ̄⋆ is approximately 1.4 g cm−3. Equa-
tion (9) is identical to others found in the literature, as
by Boughn & Kuhn (1984) and more recently by Siegel &
Roth (2011), χn differ among these works only by the ar-
bitrary normalization condition. Nevertheless, this the-
oretical model is developed in a similar manner to the
one used for resonant mass detectors. Thus, equation
(4) in which the Sconv(t) is neglected and ρ̄⋆ is consid-
ered constant, becomes equivalent to the one found for a
spherical resonant-mass detector (e.g., Maggiore 2008).
This is the motivation for us to choose a normalization
for χn that is identical to the one done for GW resonant-
mass detectors.
Figure 1 and Table 1 show the χn coefficients com-

puted for the standard solar model (SSM: Turck-Chieze
& Lopes 1993) with a stellar structure in very good agree-
ment with helioseismology data. The difference between
theoretical and observational frequencies is smaller than
0.1% (cf. Table 1). This solar model was computed using
a modified version of the Cesam code (Morel 1997) for
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Fig. 1.— This figure shows the modulus χn coefficients for acous-
tic quadrupole (l = 2) modes of radial order n, from 0 up to 18.
The values of χn coefficients were computed for the current SSM.
The numerical values are shown in Table 1.

of acoustic oscillations correspond to the solution of a
damping harmonic oscillator as described by the previ-
ous equation. A detailed account about the nature of the
second order terms neglected in this computation can be
found in Chaplin et al. (2005).
Sconv and Sgw are respectively the excitation source

terms related with turbulent convection and GWs. Sgw
reads

Sgw(t) =
1

I

∫R
0
Fgw · ξ∗

N ρr2dr, (5)

where R is the radius of the star and I is the mode inertia.
I is an arbitrary constant which we choose to be equal
to the mode of inertia, as is usually done in the theory
of stellar oscillations (e.g., Aerts et al. 2010). I is given
by

I = 4π

∫R
0
ξN · ξ∗

N ρr2dr. (6)

It is convenient to introduce MN, the so-called modal
mass; thus MN = I/ζ where ζ ≡ ξ2r,N(R) + 6ξ2h,N(R).
In the eventuality of such a star having been perturbed

by a passing GW, the response will be somehow identi-
cal to a tidal perturbation produced by a nearby object
on the stellar modes. Following from the specific prop-
erties of gravitational systems as demonstrated in gen-
eral relativity (Maggiore 2008), GW perturbations only
have modes with l ! 2. For convenience, we opt to
study the leading order of the GW perturbation, i.e., the
quadrupole modes (l = 2). This is the reason why we
have introduced δl2 in equation (4).
Equation (5) can be written in a more convenient form

by using equations (3) and (6) for which Sgw(t) reads

Sgw(t) = Ln ḧm(t) (7)

where Ln is the effective length that measures the sensi-
tivity of a mode of order n to a GW perturbation and hm
are the spherical components of hij for which the m (az-
imuthal order) take one of the following integer values:

TABLE 1
Quadrupole acoustic modes (l = 2)

Observational data and Standard solar model

n Freq. [obs] a Freq. [th] χn |Ln| Vs,gw

(µHz) (µHz) (cm) (cm s−1).
×10−4 ×107 ×h−2010−6

f − 347.10 −6.7432 2.347 0.1884
p1 − 382.26 −11.038 3.841 0.2673
p2 − 514.48 +2.1193 0.737 0.0169
p3 − 664.06 −0.6286 0.219 0.0018
p4 − 811.33 +0.2133 0.074 0.0003

×10−6 ×105 ×h−2010−10

p5 − 959.23 −8.2377 2.867 0.4484
p6 − 1104.28 +3.4804 1.211 0.0932
p7 − 1249.78 −1.5051 0.524 0.0201
p8 1394.68 ± 0.01 1393.68 +0.6836 0.238 0.0045
p9 1535.865 ± 0.006 1535.08 −0.3109 0.108 0.0008

×10−8 ×104 ×h−2010−15

p10 1674.534 ± 0.013 1673.80 +14.946 1.082 22.670
p11 1810.349 ± 0.015 1809.40 −7.8242 0.520 7.7200
p12 1945.800 ± 0.02 1944.90 +4.3862 0.272 3.1720
p13 2082.150 ± 0.02 2081.10 −2.5981 0.153 0.1413
p14 2217.69 ± 0.03 2217.00 +1.5564 0.054 0.7951
p15 2352.29 ± 0.03 2352.30 −0.9562 0.033 0.4891
p16 2485.86 ± 0.03 2486.60 +0.6204 0.022 0.3085
p17 2619.64 ± 0.04 2621.20 −0.4180 0.014 0.1851
p18 2754.39 ± 0.04 2756.90 +0.2908 0.010 0.1275

aThe observational frequency table is obtained from a compilation
made by Turck-Chieze & Lopes (2012), after the observations of
Bertello et al. (2000); Garcia et al. (2001); Turck-Chieze et al.
(2004); Jimenez & Garcia (2009). The strain h−20 take values of
1 to 103.

−2,−1, 0, 1, 2. Ln is given by

Ln = 1/2 R χn (8)

where R is the radius of the star, χn is the coefficient
that determines the efficiency of a mode of order n to be
excited by GWs. χn reads

χn =
3

4πρ̄⋆

∫1
0
ρ(r) [ξr,n2(z) + 3ξh,n2(z)] r

3dr. (9)

In the computation of equation (7), as is usually done, we
arbitrarily normalized the eigenfunctions to the average
density of the star ρ̄⋆, such that I ≡ (4π/3)R3ρ̄⋆. In the
case of the Sun, ρ̄⋆ is approximately 1.4 g cm−3. Equa-
tion (9) is identical to others found in the literature, as
by Boughn & Kuhn (1984) and more recently by Siegel &
Roth (2011), χn differ among these works only by the ar-
bitrary normalization condition. Nevertheless, this the-
oretical model is developed in a similar manner to the
one used for resonant mass detectors. Thus, equation
(4) in which the Sconv(t) is neglected and ρ̄⋆ is consid-
ered constant, becomes equivalent to the one found for a
spherical resonant-mass detector (e.g., Maggiore 2008).
This is the motivation for us to choose a normalization
for χn that is identical to the one done for GW resonant-
mass detectors.
Figure 1 and Table 1 show the χn coefficients com-

puted for the standard solar model (SSM: Turck-Chieze
& Lopes 1993) with a stellar structure in very good agree-
ment with helioseismology data. The difference between
theoretical and observational frequencies is smaller than
0.1% (cf. Table 1). This solar model was computed using
a modified version of the Cesam code (Morel 1997) for
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V2
n(ω) =

(

h⋆Ln
αs

)2 ω6

(ω2 −ω2
n)

2 + 4η2
nω

2
(A1)

where γs is an additional parameter (dimensionless and of the order of unity), that relates to the surface layer where
the velocity measurement is made.

Vn(ωn) =
h⋆Ln
αs

ω2
n

ηn
(A2)

Ln = 1/2 R χn (A3)

where R is the radius of the star, χn is the coefficient that determines the efficiency of a mode of order n to be excited
by GWs. χn reads

χn =
3

4πρ̄⋆

∫1
0
ρ(r) [ξr,n2(z) + 3ξh,n2(z)] r

3dr. (A4)
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Fig. 2.— Damping rates as a function of the frequency for the
Sun: The magenta, cyan and blue dots corresponds to the mea-
surements made by Baudin et al. (2005), Chaplin et al. (1997),
and Libbrecht (1988), and the green and yellow dots correspond to
the theoretical predictions (Houdek et al. 1999; Houdek & Gough
2002; Belkacem et al. 2009). The yellow dots corresponds to a
”comparison” theoretical model for which the damping rate is con-
sidered constant for ν ! 1.0mHz. The agreement between the
theory and observation is very good for the high frequencies, but
for the lower frequencies no observational data is available, and
there are only a few theoretical predications. The green and yellow
dots correspond to the values adopted for calculation of the GW
transfer function (Cf. Figure 3).

which the microphysics was updated. In particular, we
have computed the so-called low-Z SSM (Haxton et al.
2013) for which the solar composition used corresponds
to the one determined by Asplund et al. (2009). The
Cesam nuclear physics network uses the fusion cross-
sections recommended for the Sun by Adelberger et al.
(2011) with the most recent coefficients. A detailed dis-
cussion about the physics of the current SSM can be
found in the recent literature (e.g., Lopes & Silk 2013).
The values of |χn| in the Sun decrease with n (cf. Ta-

ble 1), a behaviour identical to the one found for a res-
onance sphere of constant density9. However, in the so-
lar case χn is two orders of magnitude smaller. This
difference is related to the fact that the solar density
decreases rapidly towards the Sun’s surface and eigen-
functions of acoustic modes are more sensitive to the ex-
ternal layers of the star. For instance, the largest of the
χn coefficients, χ1 have a value of −0.0011 for the Sun
and −0.328 in the case of a resonant sphere (Maggiore
2008). Moreover, |Ln| takes values from 107 cm (n = 0)
to 100 cm (n = 18). Solar low order modes have much
larger values than the equivalent ones found in an experi-
mental detector. A similar quantity to χn was computed
by Boughn & Kuhn (1984) and by Siegel & Roth (2011).
Unfortunately the comparison of χn for these models or
a resonant-mass detector of constant mass as described
by Maggiore (2008) is not trivial to make. Nevertheless,
χn varies in similar way to the χn factor found by Siegel
& Roth (2011), in both cases these terms decrease as n
increases and by identical orders of magnitude.

9 Note that in the case of a sphere of constant density, χn de-
pends only on the geometry of the star by means of the eigenfunc-
tions (cf. equation 9).
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Fig. 3.— The square of the transfer function T2
gw(ωN) for the

acoustic quadrupole modes of different radial order. All the acous-
tic modes show a clear well-defined Lorentz profile. However, the
low order modes have a larger full width at half-maximum than the
high order modes. The red curve corresponds to the square trans-
fer function of the combined quadrupole acoustic modes spectrum
(yellow dots in figure 2). The blue, green, magenta and cyan curves
correspond to the T2

gw(ωN) for acoustic quadrupole modes of or-
der n = 0, 1, 2 and 3.

3. EXCITATION OF STELLAR MODES BY
GRAVITATIONAL WAVES

By taking the Fourier transform of equation (4) and
neglecting transient terms arising from the initial condi-
tions on A, we obtain for the averaged power spectrum
PN(= ⟨|Ã2|⟩):

PN(ω) =
Pconv(ω) + δl2 Pgw(ω)

(ω2 −ω2
N)2 + 4η2

Nω2
(10)

where Pconv(ω) = ⟨|S̃2conv|⟩ and Pgw(ω) = ⟨|S̃2gw |⟩ are the
average power spectrum due to forcing caused by turbu-
lent convection and gravitational waves. f̃(ω) denotes
the Fourier transform of f(t). This previous result is ob-
tained under the approximation that the damping rate is
always much smaller than the frequency, i.e., |ηN| ≪ ω,
as it is the case of acoustic oscillations of the Sun and
sun-like stars. In the derivation of the previous result,
Pconv(ω) and Pgw(ω) are assumed to vary slowly with
ωN.
The power spectrum generated by stochastic excitation

Pconv(ω) is known to be caused by the turbulent con-
vection in the upper layers of the Sun and sun-like stars
just beneath the stellar photosphere (e.g., Belkacem et al.
2008). This term represents the random spectrum due
to the turbulent convection, if the temporal series is very
long, the Lorentzian profile of each acoustic mode be-
comes visible due to the systematic beating of the mode
by a random process of excitation (Kosovichev 1995). In
the following, we compute the GW contribution to the
power spectrum, i.e., PN,gw(ω). From equation (7) and
(10), PN,gw(ω) reads

PN,gw(ω) = T2
N,gw(ω) Pm(ω) (11)

where TN,gw(ω) is the transfer function of mode N, and
Pm(ω) the power spectrum of the GW source. The for-

The	magenta,	cyan,	and	blue	dots	correspond	to	the	measurements	made	by	Baudin	et	al.	(2005),	
Chaplin	et	al.	(1997),	and	Libbrecht	(1988),	and	the	green	dots	correspond	to	the	theoreGcal	predicGons	
(Houdek	et	al.	1999;Houdek	&	Gough	2002;	Belkacem	et	al.	2009).	
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where γs is an additional parameter (dimensionless and of the order of unity), that relates to the surface layer where
the velocity measurement is made.
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where R is the radius of the star, χn is the coefficient that determines the efficiency of a mode of order n to be excited
by GWs. χn reads

χn =
3

4πρ̄⋆

∫1
0
ρ(r) [ξr,n2(z) + 3ξh,n2(z)] r

3dr. (A4)
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Figure 4. Velocity power spectrum of the quadrupole modes of different orders
excited by an external GW source excited by a fiducial strain of h−20 = 1:
the peaks occurs at the location of eigenfrequencies νnl corresponding to
the different acoustic eigenmodes of the Sun (see Table 1). The red curve
corresponds to the combined power spectrum (Equation (14)). The blue,
green, magenta, and cyan curves correspond to the power spectrum of the
acoustic eigenmodes of order n = 0, 1, 2 and 3. The green and yellow dots
(Equation (15)) correspond to the two sets of theoretical ηN values shown in
Figure 3.
(A color version of this figure is available in the online journal.)

If ηN has values of the order of 10−6 µHz or 10−3 µHz
as predicted by some theoretical damping oscillation models
(cf. Figure 2), GW events with h−20 lead to VN,gw(ω) with
10−9 cm s−1 (comparison model) or 10−6 cm s−1 (theoretical
model). In the case of an occurrence of GW events with h−20 ∼
103, VN,gw(ω) will have values of the order of 10−6 cm s−1

or 10−3 cm s−1. This latter result is relatively near the current
helioseismology measurements.

In principle, it should be possible to separate the quadrupole
excitation by gravitational waves from the excitation by con-
vection. Current observational data from helio- and asteroseis-
mology allow us to determine in great detail the properties of
damping and excitation of acoustic oscillations by the turbulent
motions in the stellar upper layers (e.g., Lopes & Gough 2001).
In particular, the accurate measurement of frequencies, damping
rates, and the maximum rms surface velocities of global acous-
tic modes (modes with l ! 4) can be used to separate the GW
excitation of quadrupole modes from the excitation and damp-
ing due to the turbulent convection. This is possible because it
has been shown both theoretically and observationally that the
excitation and damping of global acoustic modes by convection
(including quadruple l = 2) depends only on the frequency of
the mode (and is independent of the degree of the mode). As
all the low degree modes are equally excited by convection, if
a low order quadrupole is stimulated by a GW source, it will
show a unique pattern in the pulsation spectrum, quite distinct
from the other global acoustic modes (like radial, dipole, and
octopole) with identical frequencies. This should be a strong
hint of excitation of quadrupole modes by a GW source.

5. SUMMARY AND CONCLUSION

In this article, we calculated the excitation of acoustic
quadrupole modes by GW in a star like the Sun by using a
formulation identical to that used for the computation of eigen-
modes in resonant-mass detectors. In this work, we used realistic

theoretical predictions of damping rates for acoustic modes of
low order which have been validated at high frequencies.

In particular, we find that the low order modes in the Sun have
a quality factor an order of magnitude higher than those found
in resonant-mass detectors. Moreover, the sensitivity of acoustic
modes to GW perturbations is regulated by an effective length
as in an experimental bar/sphere detector which in the Sun takes
values between 107 cm and 10 cm. This large variation in the
value of the effective length is related to the fact that in stars,
the eigenfunctions of acoustic modes (increasing with the order
of the mode) are mostly sensitive to the stellar envelope and less
sensitive to the stellar core.

The helioseismological acoustic wave frequencies overlap
with the gravitational radiation frequency range that will
be probed by eLISA (Amaro-Seoane et al. 2013). One of
the targets of eLISA will be nearby ultracompact binaries.
The sensitivity hf of eLISA will be only 10−18(Hz)−1/2 at
0.001 Hz, and a factor of 10 worse at 0.0003 Hz. The brightest
nearby binaries have predicted strain spectral amplitudes in the
range (3.10−18–3.10−17)(Hz)−1/2 over frequencies 0.01 Hz to
0.001 Hz. The strongest binaries over two years of observation
are predicted to have hf ∼ 10−17(Hz)−1/2 (or ho ∼ 10−20) and
frequencies as low as 0.0003Hz. The helioseismological modes
are excited over 300–3000 µHz and could be up to a factor 100
more sensitive than eLISA.11

Presently, the main caveat in this model is the damping
rate, which in the case with modes with high frequencies is
well determined (ν " 1.5 mHz) from observations, but in the
case with modes with low frequencies the damping rates are
theoretical. Accordingly, with present damping rate estimates,
we predict an rms square velocity on the solar surface of the
order of (10−1– 1)h−20 cm s−1 for an GW event with a strain
amplitude of 10−20h−20. Some of these values are near the
current rms surface velocity amplitudes measured in the Sun’s
surface.

In principle, as in experimental detectors, the measurement
of the maximum amplitude of the rms velocity of quadrupole
eigenmodes excited by GW periodic or random events is very
difficult. Nevertheless, this difficulty could in part be overcome
by taking advantage of several aspects that are unique to stars:
(1) stars (due to their very large masses) have a very high GW
integrated cross-section; (2) a large number of stars of different
masses have been found (presently more than 500) to oscillate in
a manner identical to the Sun; (3) stellar seismology instruments
are recording very long time series of seismic data, in some cases
spanning over several years, and in the case of the Sun, more
than two decades; (4) the possibility of looking simultaneously
for the same single or periodic GW event in distinct stars (as
GWs propagates between stars at the speed of light); and (5) the
possibility of using radial and dipole acoustic modes to isolate
the GW signal in the quadrupole mode, as the excitation and
damping of acoustic modes depends uniquely on the frequency.
In particular, oscillating stars can provide a unique way of
looking for contemporaneous quadrupole mode excitations in
different stars by a single GW event. As the distances between
many of these stars are relatively small, as in the case with
stellar clusters, this can be used advantageously to look for the
same GW imprint on quadrupole modes of different stars. In
these cases, the time-lag between the excitation of quadrupole
modes of two distinct stars can be determined accurately from

11 We remind the reader that hf = ho/
√

T , where T is the observation time
(see Section 3).
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Green	(and	yellow)	dots			

The	rapid	decrease	of	Vn	with	n	
is	related	with	the	low	sensiGvity	
of	acousGc	modes	(Ln)	to	the	
core	of	the	star.	

Only	low	order	(acousGc)	
quadruple	modes	have	
sensiGvity	to	gravitaGonal	
waves.				

Lopes	&	Silk	(ApJ	2014,	794	,	32)	
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was computed by Boughn & Kuhn (1984) and by Siegel & Roth
(2011). Unfortunately, the comparison of χn with these models
or a resonant-mass detector of constant mass as described by
Maggiore (2008) is not trivial to make. Nevertheless, χn varies
in a similar way to the χn factor found by Siegel & Roth (2011).
In both cases these terms decrease as n increases and by identical
orders of magnitude.

3. EXCITATION OF STELLAR MODES BY
GRAVITATIONAL WAVES

By taking the Fourier transform of Equation (4) and neglect-
ing transient terms arising from the initial conditions on A, we
obtain for the averaged power spectrum PN (= ⟨|Ã2|⟩):

PN (ω) =
Pconv(ω) + δl

2 Pgw(ω)
(
ω2 − ω2

N

)2 + 4η2
Nω2

, (10)

where Pconv(ω) = ⟨|S̃2
conv|⟩ and Pgw(ω) = ⟨|S̃2

gw|⟩ are the average
power spectrum due to forcing caused by turbulent convection
and gravitational waves. f̃ (ω) denotes the Fourier transform of
f (t). This previous result is obtained under the approximation
that the damping rate is always much smaller than the frequency,
i.e., |ηN | ≪ ω, as it is the case with acoustic oscillations of the
Sun and Sun-like stars. In the derivation of the previous result,
Pconv(ω) and Pgw(ω) are assumed to vary slowly with ωN .

The power spectrum generated by stochastic excitation
Pconv(ω) is known to be caused by turbulent convection in the
upper layers of the Sun and Sun-like stars just beneath the
stellar photosphere (e.g., Belkacem et al. 2008). This term rep-
resents the random spectrum due to the turbulent convection: if
the temporal series is very long, the Lorentzian profile of each
acoustic mode becomes visible due to the systematic beating of
the mode by a random process of excitation (Kosovichev 1995).
In the following, we compute the GW contribution to the power
spectrum, i.e., PN,gw(ω). From Equations (7) and (10), PN,gw(ω)
reads

PN,gw(ω) = T 2
N,gw(ω) Pm(ω), (11)

where TN,gw(ω) is the transfer function of mode N and Pm(ω) the
power spectrum of the GW source. The former depends uniquely
on the properties of the star, and the latter on the source of GWs.
T 2

N,gw(ω) reads

T 2
N,gw(ω) = L2

n ω4

(
ω2 − ω2

N

)2 + 4η2
Nω2

. (12)

The power spectrum of the GW source Pm(ω) is computed as
Pm(ω) = |h̃m|2. In the Sun, the propagation of forward and
backward traveling waves originating in the internal differential
rotation leads to the generation of acoustic modes of different
m. The frequency of these m-modes (fix l and n) differs only by
a few µHz (Howe 2009). The solar magnetic field produces
a similar effect leading to frequency differences of tens of
nHz (Antia 2002). Thus, for convenience, we will consider
that hm and Pm are fiducial values(for l = 2 and n fixed). This
approximation is well justified as the different hm values mainly
give us information about the direction of the GW source in the
sky in relation to the star (Maggiore 2008).

In the following, we compute the rms surface velocity VN (ωN )
of the N mode, which is measured at a specific layer of the
surface of the star (e.g., Samadi et al. 2001; Chaplin et al. 2005).

Thus, the energy absorbed by a mode with a velocity ξ̇N subject
to a force Fgw(t) = MNLnḧm (Equation (4)), averaged over
several cycles, reads

dEabs

dt
≡ ⟨Fgw(t)ξ̇N ⟩ = MNh2

oω
2ηNT 2

N,gw(ω). (13)

In this calculation, we consider that the gravitational wave
source is monochromatic, hm = hoℜ[e−iωt ], where ho =
10−17h−17 is the strain sensitivity amplitude. In an experimental
detector, ho is computed from the strain spectral amplitude
hf = ho

√
T , where T is the observation time for a GW

source that evolves slowly with time (source approximately
monochromatic), or the characteristic width in the case of a
short-lived GW burst. In the case where ω ∼ ωN , Equation (13)
approaches the result dEabs/dt = 2ηNE, where E is the energy
of the mode. Therefore, the square of the surface rms velocity,
V 2

N (ω) ≡ ζ/(2ηNI ) dEabs/dt10 when excited by a GW source,
reads

V 2
N,gw(ω) = 1/2 γs h2

o L2
n ω6

(
ω2 − ω2

N

)2 + 4η2
Nω2

, (14)

where γs is an additional parameter (dimensionless and of the
order of unity), which relates to the surface layer where the
velocity measurement is made.

The oscillation quantities, such as the acoustic eigenfunc-
tions, strongly depend on the solar surface structure, especially
the stellar atmosphere. Hence, to test the quality of our solar
oscillation model, we computed the normalized inertia Enl (with
l = 2) for the quadrupole acoustics modes, which are very sen-
sitive to the surface of the star. We found that En2 varies from
5.8 × 10−4 for n = 0 to 1.0 × 10−9 for n = 18, these values are
consistent with the results found in the literature (Provost et al.
2000). In the case where ω = ωN , Equation (14) reduces to

V 2
N,gw(ωN ) = γs

h2
oR

2χ2
nω4

N

32η2
N

. (15)

4. DISCUSSION

In the Sun, as in any spherical resonant-mass detector, the
excitation of eigenmodes by an external GW source strongly
depends on the internal structure of the star, and in particular
on how these modes are damping in the stellar upper layers.
As shown in Equation (14), ηN is the leading coefficient that
determines the capacity of solar acoustic oscillations to absorb
GWs. Although ηN is determined with precision from solar
oscillations in the high-frequency range of the acoustic spectrum
(above 1.5 mHz), this is not the case in the lower-frequency
range. In this region of the spectrum, we only have a few
theoretical predictions.

Figure 2 shows the damping rates obtained by different
observational groups: Libbrecht (1988); Chaplin et al. (1997);
Baudin et al. (2005); Garcia et al. (2011), as well as the
theoretical predictions of Houdek et al. (1999); Grigahcène
et al. (2005); Belkacem et al. (2009, 2012, 2013). The damping
rate increases in a nonlinear way with the frequency of the
modes, mostly due to the fact that ηN is strongly dependent on
the properties of the convection and the microphysics of the

10 In the particular case of VN to be evaluated at ω = ωN , this definition is
equivalent to the one found in the literature (e.g., Samadi et al. 2001; Chaplin
et al. 2005).
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locities are red giant oscillating stars in stellar clusters that are
located near ultra-compact binary systems (Kilic et al. 2013),
like AM CVn Stars, X-ray Binaries, double pulsars and dou-
ble white dwarfs. For instance, the nearest ultra-compact bi-
nary from the Sun located at a distance of 600 pc, Roelofs

et al. (2007), estimates h⋆ equal to 8 × 10–22 for which Vn

is equal to 10–9 cm s–1. However for a red giant star nearby
a compact binary for which d⋆ ∼ 0.1AU (∼ 22R⊙), (with

Agw = 10–18, see section 3.1), h⋆, Vn and An are equal to

2 × 10–12, 0.1 cm s–1 and 0.01 ppm, respectively. Equally, if
as predicted black hole binaries have h⋆ for a red giant star

at a distance of 1 pc (with Agw = 10–14, see section 3.1) of

10–7 (Moore et al. 2015), then Vn and An are 103 cm s–1 and
102 ppm, respectively.

In some cases, the stimulation of quadrupole modes by
gravitational radiation could be much larger than the photo-
spheric velocities produced by stochastic excitation by con-
vection. Red giant stars that are very nearby gravitational
wave sources, very likely belong to the same multi-bound stel-
lar systems as the gravitational wave source (Lopes & Silk
2015). A possibility is a triple system of a red giant star orbit-
ing an ultra-compact binary. In such cases, where the oscillat-
ing star is very near the gravitational source, it could trigger
new physical processes possibly suppressing the stochastic
excitation of normal modes. Recently, Derekas et al. (2011)
found that the triple system HD 181068 formed by a red giant
star orbiting a binary of red dwarfs, in which the red giant star
unexpectedly do not show evidence of sun-like oscillations.
Very likely the stellar oscillations are suppressed by tidal ef-
fects of the nearby compact binary.

Red giant stars near ultra-compact binaries should be very
common in older stellar clusters like NGC 6791. The cluster’s
advanced age suggests that it must harbour many stellar rem-
nants, like white dwarfs, neutron stars and black holes. Very
likely, some of these stars must be in compact binary systems,
well-known to be effective sources of gravitational waves.
Such as compact stellar systems could be among the tens of
observed close binary systems (de Marchi et al. 2007, 2010),
possibly at short distance of the observed pulsating red giant
stars. Garc´ıa-Berro et al. (2011) suggest the existence of a
huge population of unresolved binary white dwarfs. Bedin
et al. (2008) estimate that 34% of observed white dwarfs are
in white dwarf + white dwarf binary systems. Moreover, the
recent discovery by the Chandra X-ray Observatory (van den
Berg et al. 2013) of several strong X-ray sources including
cataclysm binary systems, also favour the existence of such
local gravitational-wave sources.

Although many stars, like main sequence and sub-giant
stars, present oscillations identical to the Sun, which in princi-
ple can be used to probe for gravitational waves, the red giant
stars are among the most interesting stellar detectors. Six rea-
sons make these a preferential target for gravitational wave
search: (i) pulsating red giant stars are being discovered up to
very large distances; (ii) for some red giant stars that have a
dense oscillation spectra, the proximity between quadrupole
modes offers the possibility to look for gravitational waves

imprints simultaneously on several quadrupole modes; (iii)
in certain case acoustic-like and gravity-like modes could be
excited (increasing the chances of a positive detection) (iv)
many of these stars are located in dense stellar regions, like
old open stellar clusters; some of which also contain binary
systems of degenerated stars, well-known sources of gravita-

100 120 140 160 180 200
10−6

10−4

10−2

100

102

 Freq. (µHz)

 V
n (c

m
 s
−1

) 

100 120 140 160 180 200
10−5

10−4

10−3

10−2

10−1

100

 Freq. (µHz)

 A
m

pl
itu

de
 (p

pm
) 

Fig. 7.— The maximum photospheric velocity and intensity amplitude of
quadrupole modes computed for a low-luminosity red giant star (model A)
excited by an external gravitational source with a fiducial strain h⋆ = 10–10.
Depending of the type of gravitational source, for instance a binary of white
dwarfs or black holes at a distance of one astronomical unity of the red giant
star, h⋆ varies from 10–14 and 10–7. The damping rate ηn was estimated from
the inertia En of model A shown in Figure 4 (see text discussion).

tional waves; (v) the possibility of looking for gravitational
wave imprints in more that one single red giant star in the
same stellar cluster. (vi) the possibility of looking for the
same gravitational event in the spectra of far apart red giant
stars provides a unique way to test gravity.
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gravitational radiation could be much larger than the photo-
spheric velocities produced by stochastic excitation by con-
vection. Red giant stars that are very nearby gravitational
wave sources, very likely belong to the same multi-bound stel-
lar systems as the gravitational wave source (Lopes & Silk
2015). A possibility is a triple system of a red giant star orbit-
ing an ultra-compact binary. In such cases, where the oscillat-
ing star is very near the gravitational source, it could trigger
new physical processes possibly suppressing the stochastic
excitation of normal modes. Recently, Derekas et al. (2011)
found that the triple system HD 181068 formed by a red giant
star orbiting a binary of red dwarfs, in which the red giant star
unexpectedly do not show evidence of sun-like oscillations.
Very likely the stellar oscillations are suppressed by tidal ef-
fects of the nearby compact binary.

Red giant stars near ultra-compact binaries should be very
common in older stellar clusters like NGC 6791. The cluster’s
advanced age suggests that it must harbour many stellar rem-
nants, like white dwarfs, neutron stars and black holes. Very
likely, some of these stars must be in compact binary systems,
well-known to be effective sources of gravitational waves.
Such as compact stellar systems could be among the tens of
observed close binary systems (de Marchi et al. 2007, 2010),
possibly at short distance of the observed pulsating red giant
stars. Garc´ıa-Berro et al. (2011) suggest the existence of a
huge population of unresolved binary white dwarfs. Bedin
et al. (2008) estimate that 34% of observed white dwarfs are
in white dwarf + white dwarf binary systems. Moreover, the
recent discovery by the Chandra X-ray Observatory (van den
Berg et al. 2013) of several strong X-ray sources including
cataclysm binary systems, also favour the existence of such
local gravitational-wave sources.

Although many stars, like main sequence and sub-giant
stars, present oscillations identical to the Sun, which in princi-
ple can be used to probe for gravitational waves, the red giant
stars are among the most interesting stellar detectors. Six rea-
sons make these a preferential target for gravitational wave
search: (i) pulsating red giant stars are being discovered up to
very large distances; (ii) for some red giant stars that have a
dense oscillation spectra, the proximity between quadrupole
modes offers the possibility to look for gravitational waves

imprints simultaneously on several quadrupole modes; (iii)
in certain case acoustic-like and gravity-like modes could be
excited (increasing the chances of a positive detection) (iv)
many of these stars are located in dense stellar regions, like
old open stellar clusters; some of which also contain binary
systems of degenerated stars, well-known sources of gravita-
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Fig. 7.— The maximum photospheric velocity and intensity amplitude of
quadrupole modes computed for a low-luminosity red giant star (model A)
excited by an external gravitational source with a fiducial strain h⋆ = 10–10.
Depending of the type of gravitational source, for instance a binary of white
dwarfs or black holes at a distance of one astronomical unity of the red giant
star, h⋆ varies from 10–14 and 10–7. The damping rate ηn was estimated from
the inertia En of model A shown in Figure 4 (see text discussion).

tional waves; (v) the possibility of looking for gravitational
wave imprints in more that one single red giant star in the
same stellar cluster. (vi) the possibility of looking for the
same gravitational event in the spectra of far apart red giant
stars provides a unique way to test gravity.
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APPENDIX

SOME NOTES

V2
n(ω) =

(

h⋆Ln
αs

)2 ω6

(ω2 −ω2
n)

2 + 4η2
nω

2
(A1)

where γs is an additional parameter (dimensionless and of the order of unity), that relates to the surface layer where
the velocity measurement is made.

Vn(ωn) =
h⋆Ln
αs

ω2
n

ηn
(A2)

Ln = 1/2 R χn (A3)

where R is the radius of the star, χn is the coefficient that determines the efficiency of a mode of order n to be excited
by GWs. χn reads

χn =
3

4πρ̄⋆

∫1
0
ρ(r) [ξr,n2(z) + 3ξh,n2(z)] r

3dr. (A4)
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Figure 1. Solar-like oscillating G-K giants observed in several CoRoT fields of view and by Kepler: projection on
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	For	many	of	these	stars,	a	few	tens	of	acousGc	modes	are	measured	with	
precision	frequencies	and	damping	rates	(l=0,1,2	and	3)		

Chaplin	et	al.	(ApJ	Sup.	2014)	
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Discovery	of	oscillaGons	in	Main	sequence,		sub-giant	stars	(~	500)		
and	red	giant	stars	(~	12	000)	in	the	solar	neighbourhood.	
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Fig. 3.— Comparison of Sun-like star’s detectors with current gravitational waves detectors: (i) The range of frequencies for probing
for gravitational wave sources is evaluated from the observed acoustic spectra of Sun-like stars: main sequence and subgiant stars show
oscillations from 2 10-4 Hz to 10-2 Hz (Arentoft et al. 2008); and red giant stars from 10-7 Hz to 5 10-3 Hz (Mosser et al. 2013) (magenta
shadowed area). (ii) The range of strain amplitudes possible to probe by natural star detectors, depends mainly from the amplitude
generated by the gravitational wave source, as unlike for gravitational wave detectors on Earth, Sun-like stars can be located quite close
to the source. As for the example shown in Figure 2 if a natural star detector is located at a distance of 1 AU from the gravitational wave
source (red vertical line in Figure 2), for which h?(1AU) ⇠ 3 10-14, this corresponds to h� ⇠ 2 10-22 on Earth, leading to an e↵ective
strain gain of 10+8. Equally, if the star detector is located at 1 solar radius from the gravitational wave source h?(1R�) ⇠ 5 10-12. At
these distances all the low order modes (n 6 4) of the star are stimulated by the gravitational waves generated by the compact stellar
binary. The strain sensitivity curve of the di↵erent gravitational detectors and most common sources of gravitational waves were adapted
from Moore (2014).

probe gravitational waves in the range from 10-7 Hz to
10-2 Hz, which overlaps with the gravitational radiation
frequency range that will be probed by eLISA (Amaro-
Seoane et al. 2013) for the high frequency range and
EPTA (Ferdman et al. 2010) and SKA (Johnston et al.
2007) in the low frequency range. More significant even
is the possibly of probing the range from 10-6 Hz to 10-5

Hz, a frequency range which no experiment has yet been
planned. This is illustrated in Figure 3. In the low fre-
quency range, this region corresponds to the predictions
of stochastic background radiation and supermassive bi-
naries. In the high frequency range, it corresponds to un-
resolvable galactic binaries, extreme mass ratio inspirals
and resolved galactic binaries (Sathyaprakash & Schutz
2009).
One of the targets of eLISA will be nearby ultracom-

pact binaries, such as the binary system AM CVn dis-
cussed in this Letter as a template. The strategy of using
Sun-like stars as detectors will enable us to determine the
impact of gravitational waves in the photospheric veloc-
ities of quadrupole modes, or, at least, to fix an upper
limit on the strain of the gravitational waves generated
by these sources. The h sensitivity of eLISA will be
10-16 to 10-20 for the frequency range of 10-5 Hz to
10-2 Hz which is not su�cient to detect the gravita-

tional waves produced by the AM CVn binary system,
predicted to have a strain amplitude on Earth of 10-22

(cf. Figure 3). Yet, a star like the Sun that is located
at a distance of either 1000 AU or 1 AU from this bi-
nary system could detect these gravitational waves with
a strain of 10-17 or 10-14, respectively. As shown in
figure 2 the quadrupole modes of lowest orders will be
stimulated by these gravitational waves producing pho-
tospheric velocities well above the observational limit of
the detector. Moreover, for the shortest distances the
photospheric velocities due to gravitational wave stimu-
lation are well above the photospheric velocities due to
turbulent stochastic convection. In particular the f-mode
at a distance of 1 AU will have an amplitude of the order
of 2.5 cm s-1. Moreover, other stars like sub-giant and
red giant stars could scan other parts of the frequency
range of the gravitational wave spectrum, including out-
side of the current range of detectors.
Red giant stars with oscillations within the frequency

range from 10-7 Hz to 10-3 Hz (Mosser et al. 2013)
can be used to explore events related with super-massive
binaries for which the strain on Earth is predicted to be
of the order of 10-14 (see Moore 2014, and references
therein).
Altogether, by using our proposed method, main-

convec,on	zone	

magnetopause	

Main	 sequence,	 sub-giants	 and	 red	 giant	 stars	 	 (seismology):	 	 In	 principle	 can	 be	 used	 as	
detectors	of	gravitaGonal	waves	

Gravita,onal	Wave	Detectors	and	Sources		

Lopes	&	Silk	(ApJ	2015)	
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²  Stars	and	GW	detectors:	

²  	Sun-like	oscillaGons	were	discovered	in	five	hundred	main	sequence	
and	sub-giant	stars	and	in	more	than	twelve	thousand	red	giant	stars	
in	the	solar	neighbourhood.	

²  Sun-like	oscillaGng	stars	form	a	set	of	natural	detectors	that	can	be	
used	to	search	for	gravitaGonal	waves	in	a	large	frequency	range	of	
the	spectrum,	from	10−7	Hz	to	10−2	Hz.	

²  	The	group	of	all	oscillaGng	stars	in	the	solar	neighbourhood	within	a	
five	thousand	parsecs	radius,	consGtutes	the	largest	detector	ever	for	
gravitaGonal	radiaGon.	

²  	There	are	thousands	of	oscillaGng	stars	scaOered	throughout	space,	
some	of	which	can	be	found	relaGvely	near	gravitaGonal	wave	
sources.	

²  	Alignments	of	stars	between	the	source	and	the	Solar	System	can	
monitor	the	progression	of	gravitaGonal	waves	throughout	space,	
which	can	be	used	as	a	test	to	probe	General	RelaGvity,	a	goal	that	is	
difficult	to	achieve	with	present	man-made	detectors.	

GravitaGonal	Waves	
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Plato	(2024)	

Solar-like oscillating stars as standard clocks and rulers for Galactic studies 5

cently approved by the NASA senior review, and observations of ⇠ 8,600 giants
in the first full science campaign has already been made, and 5,000 more will be
observed in Campaign 2. Future K2 observations may also provide constraints on
giants belonging to the Galactic bulge (Campaign 9) and, crucially, in the globular
cluster M4 which would serve as a much needed test for seismic scaling relations in
the metal poor regime (Epstein et al., 2014) .

Fig. 3 Schematic comparison of PLATO 2.0, CoRoT and Kepler’s fields of view and observational
strategy. With a combination of short (step-and-stare) and long duration pointings PLATO 2.0 will
cover a large fraction of the sky. Note that the final locations of long and step-and-stare fields
will be defined after mission selection and are drawn here for illustration only. Figure taken from
http://www.oact.inaf.it/plato/PPLC/Science.html.

The all-sky mission TESS (Ricker, 2014) will also significantly add to the harvest
of bright Sun-like stars in the solar neighborhood, and is expected to be launched in
2017. Thanks to the early achievements with CoRoT and Kepler, Galactic archeol-
ogy has now been included as one of the major scientific goals of ESA’s medium-
class mission PLATO 2.0 (see Rauer et al. 2013), which will supply seismic con-
straints for stars over a significantly larger fraction of the sky (and volume) com-
pared to CoRoT, Kepler, and K2. An illustration of PLATO 2.0’s observational
strategy is presented in Figure 3. By detecting solar-like oscillations in ⇠85,000
nearby dwarfs and an even larger number of giants, PLATO 2.0 will provide a rev-
olutionary complement to Gaia’s view of the Milky Way. PLATO 2.0 is planned for
launch by 2024.

3 From precise to accurate clocks and rulers

Seismic data analysis and interpretation techniques have undergone a rapid and con-
siderable development in the last few years. However, they still suffer from limita-
tions, e.g.:
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SchemaGc	comparison	of	PLATO	2.0,	CoRoT	and	Kepler’s	fields		of	view	and	observaGonal	strategy.	With	a	combinaGon	of	
short		(step-and-stare)	and	long	duraGon	poinGngs	PLATO	2.0	will	cover	a	large	fracGon	of	the	sky.	Note	that	the	final	
locaGons		of	long	and	step-and-stare	fieldswill	be	defined	a�er	mission		selecGon	and	are	drawn	here	for	illustraGon	only.	

(By detecting solar-like oscillations in  85,000 nearby dwarfs and an 

 even larger number of giants)	



							Stars	are	a	fundamental	tool	to	probe	the	nature	of	fundamental	physics.	
–  In	the	last	50	years,	Helioseismology		revealed	a	very	complex	and	dynamical	Sun.	
–  In	the	following	decades,	Asteroseismology	will	change	our	view	about	the	formaGon	

and	evoluGon	of	stars	as	well	our	understaGng	of	fundamental	physics.	
–  (Op,mis,c	View):	“The	conGnuous	observaGon	and	monitoring	of	the	oscillaGon	

spectra	of	the	stars	around	us,	within	a	sphere	of	up	to	one	thousand	parsecs,	could	
lead	to	the	discovery	of	gravitaGonal	waves	originaGng	in	our	Galaxy	or	even	elsewhere	
in	the	Universe.”	
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