Strong cosmic censorship in spherical symmetry

José Natário (Instituto Superior Técnico, Lisbon)

Lisbon, December 2015

Outline

- Strong cosmic censorship
- Einstein-Maxwell-scalar field equations in spherical symmetry
- Christodoulou's results
- Dafermos' results
- Our results

Strong cosmic censorship

- The appearence of a visible singularity destroys determinism: the singularity can radiate gravitationally or otherwise (mathematically it is a singular boundary).
- Obvious conjecture: the singularities that form are never locally naked, that is, visible by some observer.
- Well known to be false: counter-examples are the dust cloud solutions of Christodoulou, or the Reissner-Nordström solution.

• However, the blueshift effect should make the Cauchy horizon unstable:

- Corrected conjecture: For generic solutions of the Einstein field equations with reasonable matter models, the singularities that form are never locally naked.
- PDE version: For generic asymptotically flat or compact initial data the future maximal globally hyperbolic development is inextendible.

Einstein-Maxwell-scalar field equations in spherical symmetry

- Birkhoff's theorem: there are no gravitational degrees of freedom in spherical symmetry.
- Simplest hyperbolic matter model: massless scalar field.
- Simplest spherically symmetric solution containing a Cauchy horizon: Reissner-Nordström (electromagnetic field).

• The equations for a gravitating massless scalar field ϕ in a sourceless electromagnetic field F with a cosmological constant Λ are

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 2T_{\mu\nu}$$

$$T_{\mu\nu} = \partial_{\mu}\phi \,\partial_{\nu}\phi - \frac{1}{2}\partial_{\alpha}\phi \,\partial^{\alpha}\phi \,g_{\mu\nu} + F_{\mu\alpha}F_{\nu}^{\ \alpha} - \frac{1}{4}F_{\alpha\beta}F^{\alpha\beta}g_{\mu\nu}$$

$$\Box \phi = 0$$

$$dF = d^{*}F = 0$$

(using units for which $c = 4\pi G = \varepsilon_0 = 1$)

• If we impose spherical symmetry then the metric and the fields become

$$ds^{2} = -\Omega^{2}(u, v)du dv + r^{2}(u, v) \left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$$

$$\phi = \phi(u, v)$$

$$F = -E(u, v) \frac{\Omega^{2}(u, v)}{2} du \wedge dv$$

• In particular the electromagnetic field completely decouples:

$${}^{\star}F = E(u,v)r^2(u,v)\sin\theta\,d\theta \wedge d\varphi \Rightarrow E(u,v) = \frac{e}{r^2(u,v)}$$

• The total charge $4\pi e$ is topological: initial surface t = 0 in Reissner-Nordström is

• Introducing the renormalized Hawking mass ϖ through

$$1 - \frac{2\varpi}{r} + \frac{e^2}{r^2} - \frac{\Lambda}{3}r^2 = -\frac{4\partial_u r \partial_v r}{\Omega^2} = (\operatorname{grad} r)^2$$

the Einstein-Maxwell-scalar field equations become

$$\partial_u \partial_v \phi = -\frac{\partial_u r \, \partial_v \phi}{r} - \frac{\partial_v r \, \partial_u \phi}{r}$$
$$\partial_u \partial_v r = \partial_u r \, \partial_v r \, \frac{\frac{2\varpi}{r^2} - \frac{2e^2}{r^3} - \frac{2\Lambda}{3}r}{1 - \frac{2\varpi}{r} + \frac{e^2}{r^2} - \frac{\Lambda}{3}r^2}$$
$$\partial_u \varpi = \left(1 - \frac{2\varpi}{r} + \frac{e^2}{r^2} - \frac{\Lambda}{3}r^2\right) \frac{(r\partial_u \phi)^2}{2\partial_u r}$$
$$\partial_v \varpi = \left(1 - \frac{2\varpi}{r} + \frac{e^2}{r^2} - \frac{\Lambda}{3}r^2\right) \frac{(r\partial_v \phi)^2}{2\partial_v r}$$

Christodoulou's results

- Christodoulou (1999): Strong cosmic censorship is true for the Einstein-scalar field system ($e = \Lambda = 0$) in the C^0 formulation.
- Generic: dispersive or black hole.
- Non-generic: light cone singularity (possibly naked), collapsed light cone singularity, black hole with light cone singularity, black hole with collapsed light cone singularity.

Dafermos' results

5

• Characteristic initial data:

- Poisson and Israel (1989) gave a nonlinear heuristic analysis suggesting that for $\Lambda = 0$ the Cauchy horizon of generic solutions ($\phi \neq 0$) still has $r \sim r_{-}$, but $\varpi \rightarrow +\infty$ (mass inflation).
- Brady, Moss and Myers (1998) performed a linear analysis suggesting that mass inflation might not occur for $\Lambda > 0$ near extremality (but the curvature still blows up at the Cauchy horizon).

- Dafermos (2005) proved the following two results for the spherically symmetric Einstein-Maxwell-scalar field system.
- **1.** If $|\partial_v \phi| \leq v^{-1}$ along the event horizon then r can be extended to a nonvanishing continuous function on the Cauchy horizon, and so the metric can be extended as a C^0 metric.
- 2. If $v^{-3} \leq |\partial_v \phi| \leq v^{-1}$ along the event horizon then the Hawking mass blows up identically along the Cauchy horizon, and so the metric is inextendible as a C^1 metric.
 - The first hypothesis (Price's law) was subsequently proved to occur by Dafermos and Rodnianski (2005).

Our results

- We (João Costa, Pedro Girão, J. N., Jorge Drumond Silva) consider the case $|\partial_v \phi| \sim e^{-(\frac{1}{s}-1)k_+v}$, 0 < s < 1, for any Λ .
- r can always be extended to a nonvanishing continuous function on the Cauchy horizon, and so the metric can be extended as a C^0 metric.
- Mass inflation depends on s and $\rho = \frac{k_-}{k_+} > 1$ (we exclude the extremal case $\rho = 1$).

- For $\Lambda > 0$ one expects an exponential decay in Price's law, which can be as fast as $|\partial_v \phi| \sim e^{-2k+v}$, that is, $s = \frac{1}{3}$.
- So it is likely that there is no mass inflation near extremality.
- However, the Kretschmann scalar blows up for $s > \frac{1}{3}$, and so the metric is inextendible as a C^2 metric.