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+ There is strong observational evidence that black holes (BHs) exist.
[M. Begelman, Science 300 (2003)]

+ BHs are theoretically predicted as the endpoint of gravitational collapse of

sufficiently massive stars. [Oppenheimer, Snyder (1939)]
[Oppenheimer, Volkoff (1939)]

+ The vast majority of celestial objects are rotating. Black holes are no exception.

ESO /). Pérez ESO
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+ Poor analytic control over highly dynamical scenarios.

In particular, little is known about gravitational collapse with rotation.

4 however see [Nakamura (1981)]
[Stark, Piran (1985)]
[Abrahams, Evans (1993)]

v
non-spherical gravitational collapse

“the study of non-spherical collapse within exact solutions of Einstein field equations
is a field where most of the work still needs to be done”

in “Recent developments in gravitational collapse and spacetime singularities”,
P S. Joshi and D. Malafarina, [[MP D (2012)
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Introduction: Why should we care?

At least 3 reasons:

|. realistic collapses should include rotation;

2. known ‘violations’ of the cosmic censorship conjecture (CCC) occur in
non-rotating — thus non-generic — settings;

3. rotation introduces instabilities (e.g., superradiance);
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Introduction: (Weak) Cosmic censorship conjecture

+ Cosmic censorship is an outstanding problem of classical GR. [Penrose (1969)]

+ Singularities resulting from the evolution
of regular and generic initial data, with
bhysically acceptable matter, always
appear hidden behind event horizons.

+ Still no proof available or unquestionable
counter-example (asymptotically flat).

However, see: [Lehner, Pretorius (2010) o Q)
[Dias, Horowitz, Santos (201 1)] sationary M
[NlehOﬁC, _Santqs,\/\/ay (ZO | 5): from [Penrose (|969)]
[Green, Hollands, Ishibashi,, Wald (2015)]
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+ Advantage of non-rotating setups is their large amount of symmetry.
Spherical symmetry reduces problem to 1+1 dims.

+ d alarger class of (rotating) BH spacetimes that are stationary and whose
metric depends on a single radial coordinate:

[cohomogeneity-l solutions ]

+ The price to pay for the convenience provided by cohomogeneity-1 spacetimes is
the restriction to higher (odd) dimensions, D=2N+3 with N=1, 2, 3, ...
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N+1

+ Myers-Perry(-AdS) BHs in D=2N+3 dims possess isometry group R x U(1)
[Myers, Perry (1986)]

[Hawking, Hunter, Taylor-Robinson (1999)]

[Gibbons, LU, Page, Pope (2004)]

+ When all spin parameters are set equal, a; = a, this symmetry is enhanced,

R x U(1)N ! — R xU(N +1)

and coordinates can be found that reflect this large amount of symmetry,

so that the metric depends on just one (radial) coordinate.
[Froloy, Stojkovic (2003)]

'Kunduri, Lucietti, Reall (2006)]

+ n.b. Constant ¢ and r sections are squashed (2N+1)-spheres.



Background: Cohomogeneity-1 black holes

+ S2N*tl can be written as an S! bundle over CPV.



Background: Cohomogeneity-1 black holes

+ S2N*tl can be written as an S! bundle over CPN.

+ For N=1, CP'~ S?.(Hopf fibration)

credit: N. Johnson



Background: Cohomogeneity-1 black holes

+ S2N*tl can be written as an S! bundle over CPN.

+ For N=1, CP'~ S?.(Hopf fibration)

ds* = —f(r)?dt* + g(r)?dr? + r*Gapdz®dx’

+ h(r)? [dy + Audz® — Q(r)dt]?

e

coordinate parametrisjing the S’ fibers

2N coordinates on CPN —

credit: N. Johnson
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+ The metric is

ds?® = gy datde” = —f(r)2dt? + g(r)2dr?® + r?Gapda®de® + h(r)? [di + Agdz® — Q(r)dt]”
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+ The metric is

ds? = gupdztdx’ = —f(r)2dt® + g(r)?dr? + 7“ r@dz’ + h(r)? [dy —I—.ala: —

where

2 — 2\ —1
5 r M= 2Ma r
—_— 1 — —
g(r) ( + 2~ 2N + T2N—|—2> ; f(r) g(Mh(r)
2M a? 2Ma a2
2 9 _ = _

Jdab denotes the Fubini-Study metric on CPY and A,dx* is its Kahler potential.
ror N=11 @abdxadxb = i (62 + sin’ edq@, [ = %cosec@.




Background: Cohomogeneity-1 black holes

+ The metric is

ds* = g, dztdz” = .dt2 +.dr2 + r:z;“d:cb + .[d%b +:U“ —.dt]2

where
-’

_ a”
: ==1

-5

Gab denotes the Fubini-Study metric on CPY and A,dz? is its Kahler potential.

For N=1 [ﬁabdxadxb _ i (d92 1+ sin? qub?), [ — 5 cos@dga.
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Rotating thin shells: Shells in cohomogeneity-1 spacetimes

[ exact approach: Darmois-Israel junction conditions]

[Delsate, JVR, Santarelli (2014)]

+ The cohomogeneity-| property allows an exact calculation, by ‘gluing’ an interior
to an exterior geometry. [Israel (1966)]

[Boulware (1973)]
\\\ / Peleg Steiff (1995)
[Gao, Lemos (2008)]

——— - -
= - o

- o - -

+ Previous attempts with rotation have been successful only in the slowly rotating

regime or in 2+ dimensions. [de la Cruz, Israel (1968)]  [Criséstomo, Olea (2004)]
[Lindblom, Brill (1974)] [Mann, Oh, Park (2009)]
[Musgrave, Lake (1996)

13
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Rotating thin shells: Shells in cohomogeneity-1 spacetimes

+ Take advantage of available symmetry: consider shells that respect full set of

spatial isometries. Focus on N=1, for simplicrty.

+ n.b.The dynamics on the CP'=S? and on the S separate.

All traces of the rotation show up in the {r, %} plane.

{r,0,0}

v}

< @
\ [JVR, Santarelli, Delsate (2014)]
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Rotating thin shells: Junction conditions |

+ Use junction conditions along a timelike hypersurface, t = 7(7),r = R(7):
llsrael (1966)]

(+) (=) _

induced metric — §;; " = §;; * = 8ij 5 shell’s stress-

extrinsic curvature ——» (k,f;r) — kz(j_)) — gij(k(“ — k(_)) — —87TGSij/ -energy tensor

+ For D>3, we get one additional constraint from the st junction condition:

» M_|_CL3_ m— M_az_

If we wish to include rotation, we must have a BH (or a star) in the interior geometry.

|5
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Rotating thin shells: Junction conditions Il

+ The 2nd junction condition requires the shell stress-energy tensor to

take the form of an imperfect fluid:

Sij = (p+ Plujuj + P gij + 20 u &) + AP RQ@'J‘

| TS

pressure pressure anisotropy

where 4 = 0. and £ = h(R)™10y.
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Rotating thin shells: Equation of state and shell equation of motion

+ The stress-energy tensor components are dictated by the metric components:

where B+ = f+ \/1 + g3 R2.

+ For simplicity, assume a linear equation of state, ° = wp.
(Other EoS can be considered, e.g., polytropic)

+ These equations can be integrated, yielding the shell’s equation of motion:

(R?+ Ver(R) = 0]

|7



Rotating thin shells: Effective potential for shell equation of motion

+ For generic values of N, and a linear equation of state:
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+ For generic values of N, and a linear equation of state:
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+ For generic values of N, and a linear equation of state:
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2N+1 w—
M+—M_)2(R2N> N w<1+2Ma2> !
integration constant —> Mo m R2N+2
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+ For generic values of N, and a linear equation of state:

= — R?  2Ma®?  2Ma? M, + M_
(72 + Ve (R) = 0) Vet (R) = 1+ 2 + 2N + R2N+2 2N

(M+ M\ RN\ N oMa2 \ V!
— — 1
— My ) ( mo ) ( * R2N+2>

1 7/ mg \ 2+ w IMa2 \ 'Y
4 (R2N) (1 T R2N+2> '

+ For N=1 and large values of R:

R2  (AMN? [R2\ 1 mgy2+3uw
1B (5 (2) 4 ()
= —1_62 (m()) (m()) 4 RZ

+ For N=1 and small values of R;

v f\sz\fCL2 M_|_—|—M_ 1 2MCL2 1w(m0)4+w 2MCL2 w—1 AM 2 R2 24w
o RA R2 4 m% 2
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+ For generic values of N, and a linear equation of state:
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Rotating thin shells: Stationary shell around a BH in AdS




Rotating thin shells: Stationary shell around a BH in AdS

3 (sumble) stationary confgurations of shell around rotating BHs in AdS

|9



Rotating thin shells: Stationary shell around a BH in AdS

[Delsate, JVR, Santarelli (2014)]
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Rotating thin shells: Full collapse in asymptotically flat spacetime

+ Take asymptotically flat limit, ¢ — oco.

+ Collapse starting from rest at infinity imposes: — w = 0 [i.e., matter on the shell
\ has EoS of dust
mog = AM | i.e., the increment in
mass of the spacetime
is given precisely by the
mass of the shell

M_=0.2, M,=0.25, Ma®=0.012, my=0.05

R(7)
[Delsate, JVR, Santarelli (2014)]
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+ Take asymptotically flat limit, ¢ — oco.

+ Collapse starting from rest at infinity imposes: — w = 0 [i.e., matter on the shell
\ has EoS of dust

mo = AM | i.e., the increment in
mass of the spacetime
is given precisely by the
mass of the shell

M_=0.2, M,=0.25, Ma®=0.012, my=0.05

Weak energy conditions
(WEC) are satisfied

| 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2

[Delsate, JVR, Santarelli (2014)]
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Rotating thin shells: Full collapse in asymptotically flat spacetime

+ Take asymptotically flat limit, ¢ — oco.

+ Collapse starting from rest at infinity imposes: — w = 0 [i.e., matter on the shell
\ has EoS of dust

mo = AM | i.e., the increment in
mass of the spacetime
is given precisely by the
mass of the shell

M_=0.2, M,=0.25, Ma®=0.012, my=0.05

Weak energy conditions
(WEC) are satisfied

| 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2

R() CCC is preserved
[Delsate, VR, Santarelli (2014)]
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Rotating thin shells: Diverse scenarios

M_=0.2, M,=0.25, Ma®=0.012, my=0.05

T T L S S B E— | L E—

M_=0.2, M,=0.25, Ma?=0.016, mg=0.05
>

R() 2|
Full collapse e
_4;

_5:1 L 1 L

0.0 1.2

R()
Bounce

2
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Rotating thin shells: Scanning parameter space

+ Again, consider collapse in AF spacetime starting from infinity at rest.
This imposes w=0 and M+=M_+my.
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+ Again, consider collapse in AF spacetime starting from infinity at rest.
This imposes w=0 and M+=M_+my

+ Moreover, use invariance under rescalings to set M.=1.
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Conclusion

+ Presented a framework to study effects of rotation on gravitational collapse of

matter shells.

+ Matching two rotating BH spacetimes across a thin shell is possible.
Despite absence of gravitational radiation, it is more generic than spherical collapses.

< |t requires matter on the shell to be an imperfect fluid.

< Stationary solutions describing rotating shells of matter surrounding spinning BHs
exist in AdS.

< Full collapse onto rotating, asymptotically flat BH starting from rest at infinity
(and satisfying energy conditions) respects the CCC.

25



Future prospects / work in progress

26



Future prospects / work in progress

+ Collapses with rotation:

< Conduct more exhaustive scan of parameter space (other EoS, not starting from rest)

< Go beyond thin shell approximation (requires numerical approach)

26



Future prospects / work in progress

+ Collapses with rotation:

< Conduct more exhaustive scan of parameter space (other EoS, not starting from rest)

< Go beyond thin shell approximation (requires numerical approach)

+ Stationary shells around spinning BHs in AdS:

< Study their stability

26



Future prospects / work in progress

+ Collapses with rotation:

< Conduct more exhaustive scan of parameter space (other EoS, not starting from rest)

< Go beyond thin shell approximation (requires numerical approach)

+ Stationary shells around spinning BHs in AdS:

< Study their stability

+ [Exact rotating star solutions

< Use info acquired about anisotropies of rotating matter to construct models of
rotating stars

26



Future prospects / work in progress

+ Collapses with rotation:

< Conduct more exhaustive scan of parameter space (other EoS, not starting from rest)

< Go beyond thin shell approximation (requires numerical approach)

+ Stationary shells around spinning BHs in AdS:

< Study their stability

+ [Exact rotating star solutions

< Use info acquired about anisotropies of rotating matter to construct models of
rotating stars

ﬂdn/é Vou.
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Introduction: (Weak) Cosmic censorship conjecture

+ Some arguments supporting the conjecture:

|. Collapse of a homogeneous (spherically symmetric) ball of dust yields a BH.
[Oppenheimer, Snyder (1939)]

2. Numerical studies of axially symmetric star collapses do not show evidence of
[Nakamura (1981)]

naked singularity formation. |
[Stark, Piran (1985)]

3. High-energy BH collisions in 4D with arbitrary impact parameter invariably yield
1 Kerr BH. [Sperhake et al. (2009)]

4. Once formed BHSs are hard to kill. E.g, stability of Kerr(-Newman).  [Whiting (1989)]
[Zilhdo et al. (2014)]

[Dias, Godazgar, Santos (2015)]

5. CCC survives Wald's spin-up process with test particles for a wide variety of BHSs
(spinning, charged, higher dimensions, non-spherical horizon topology, AdS).

[Wald (1974)]

[Bouhmadi-Lopez, Cardoso, Nerozzi, VR (2010)]

[JVR, Santarelli (2014)]
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Introduction: (Weak) Cosmic censorship conjecture

+ However, there are indications of naked singularity formation:

non-homogeneous
spherical collapse

[Eardley, Smarr (1979)]

= spacetime
) —+ i ity
N T singularity
] -
event
. horizon
outgoing
null geodesics
A A A
apparent
y horizon
A A r R

initial surface

critical collapse
[Choptuik (1983)]

flat space fixed point

black .~ 7
hole o~
threshold of
«
1-parameter
) family of
critical ) initial data
poant
Y
-~
-
d o p<p*
F p=p*

~ 7 black hole fixed point
O =

from [Joshi, Malafarina (2012)]

from [Gundlach, Martin-Garcia (2007)]

endpoint of Gregory-Laflamme
instability in 5D

[Lehner, Pretorius (2010)]

endpoint of superradiant
instability in AdS

[Dias, Horowitz, Santos (201 1)]

[Niehoff, Santos, Way (2015)]

[Green, Hollands, Ishibashi, Wald (2015)]

+ Under what conditions (genericity, dimensionality, matter content, ...) can the CCC hold?
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