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LQC chronology

2000-2002: Early pioneer work by Martin Bojowald

2003: Rigorous foundations, by Ashtekar, Bojowald and Lewandowski

2006: Major conceptual, theoretical and technical developments, by
Ashtekar, Pawlowski and Singh. First full quantum treatment. Derivation
of the quantum bounce.

Last years: lots of activity, both in the development of the theory and in
applications - early universe, inflation.

Mena Marugán, Martín-Benito, Olmedo
also Barrau, Chiou, Corichi, Sloan, Wilson-Ewing, and many others ...



What it is

Loop Quantum Gravity (LQG) takes GR at face value. No modifications of
GR at the classical level. New effects / modifications are supposed to emerge
upon quantization. It aims at a Quantum Theory of Gravity and assumes that
this is possible without extra ingredients. Just background independence and
nonperturbative methods.

Loop Quantum Cosmology (LQC) is LQG’s little cousin: it takes standard
classical homogeneous cosmological models at face value and applies
LQG-inspired quantization techniques.

Modifications to classical GR in cosmological models are therefore coming
from quantum effects.

Not surprisingly, the most worked out and best understood model is k=0
FLRW, for which there is a complete quantum treatment.

Many developments and applications are based on modified semi-classic, or
effective equations, such as modified Friedmann equation and modified
Raychaudhuri equation, coming from typical LQC effects.

All isotropic models are well understood, and also anisotropic models
(Bianchi I, II and IX, confirmed with numerical simulations). Also good
indications for inhomogeneous (Gowdy) models



What it is not

It is not equivalent to the old Wheeler-De Witt approach to quantum
cosmology (quantum geometrodynamics).

It is not based on the standard quantization procedure. It follows a
non-equivalent quantization procedure, inspired by LQG - this is in fact the
reason why different results are obtained.

However, LQC is also not deducible or derivable from LQG, at least in the
present state of afairs. It is inspired by LQG and mimics as much as possible
the main steps, but there are choices involved and room for creativity.



What does it achieve

The LQC approach avoids the big bang (and big crunch) singularity
altogether, replacing it with a bounce

The existence of singularities, such as the big bang, points to the
incompleteness of classical GR, which reaches its limits when the spacetime
curvature is extremely large.

Einstein 1945: "One may not assume the validity of field equations at very
high density of field and matter and one may not conclude that the beginning
of the expansion should be a singularity in the mathematical sense."

There was hope that those singularities would be understood and avoided by
a quantum approach to gravitational physics.

However, that hope was not satisfactorily fulfilled for a long time.



What does it achieve

The key modifications of GR by LQC are well-captured in effective
equations. Modified effective Friedmann equation

H2 =
8πG

3
ρ
(

1− ρ

ρcrit

)
, ρcrit = 0.41ρPlanck

Singularity removal in LQC is generic: different types of singularities,
other homogeneous models, Gowdy (inhomogeneous) models



How is it done: LQG

Hamiltonian formulation of GR (for globally hyperbolic spacetimes).
Inital data: induced spatial 3-metric qab and extrinsic curvature Kab.

Replace:
1) the spatial 3-metric with the densitized triads

Ea
i =

√
|q|ea

i , Ea
i Eb

j δ
ij = |q|qab (1)

2) the extrinsic curvature with the Ashtekar-Barbero connection

Ai
a = Γi

a + γK i
a (2)

γ is the Immirzi parameter, Γi
a is the su(2)-connection compatible with the

co-triad and K i
a = Kabeib

Connnections and triads form a canonical set for classical GR



Over-complete new set of variables: holonomies and fluxes

SU(2)-holonomies along (piecewise analytic) curves e

he = P exp
∫

e
Ai

aτidxa (3)

Smeared fluxes of the vector densities Ea
i through surfaces S

E(S, f ) =

∫
S

Ea
i f iεabcdxa dxb (4)

There is essentially a UNIQUE way of quantizing this variables.

In LQG, the connection itself cannot be quantized, only the holonomies.

Geometry is fundamentally discrete: there is an area gap ∆



How is LQC done: homogeneous and isotropic cosmology

LQC: apply LQG quantization techniques to homogeneous and isotropic
(FLRW) cosmologies.

Fiducial triad ẽa
i

Ai
a = c ẽi

a, Ea
i = p

√
|q̃| ẽa

i (5)

The canonical pair (c, p) describe the geometry degrees of freedom

The relation with the usual scale factor is c = γȧ, |p| = a2

ds2 = −dt2 + a2(t)
(

dr 2 + r 2dΩ2
)



LQC quantization

Elementary variables: holonomies along straight edges

hi (µ) = cos(µc/2)1 + 2sin(µc/2)τi

and fluxes accross squares.

In practice, one needs to quantize p and functions of c of the type eiµc , µ ∈ R

Guided by LQG, we look for quantum representations of the holonomies, or
eiµc , which do not lead to a quantization of the connection c.

Nonregular representations, avoids Stone-von Neumann uniqueness

Effectively, p is discrete and c is compactified - manifestation in LQC of the
existence of an area gap in LQG / discrete geometry



Simple model: FLRW with minimally coupled massless scalar field

To have an interesting and fully treatable quantum model, consider a
massless scalar field φ (minimally coupled).

Classical Hamiltonian constraint

C = − 3
8πG

π2
a

a
+

π2
φ

2a3 = − 3
4γ2 b2|v |+

π2
φ

4πG|v | , (6)

where
b = c/|p|1/2, v = sgn(p)|p|3/2 (7)

(
Friedmann equation

ȧ2

a2 =
8πG

3
ρ, ρ =

π2
φ

2a6

)



Classical singular trajectories

Equation of state: w = P/ρ = 1. Integration yields ρ ∝ a−6

φ is a monotonic function, can play the role of internal time

The classical trajectories can be obtained:

φ = ± 1√
12πG

ln
( v

v0

)
+ φ0

where v0 and φ0 are constants.

One trajectory corresponds to the expanding universe with big bang
singularity in the past evolution. The other trajectory corresponds to the
contracting universe with big crunch singularity in the future evolution.



Classical singular trajectories



Singularity resolution: what does it mean?

Do to the discreteness of p, and therefore of v , the Hamiltonian constraint (7)
becomes a difference equation (φ, πφ are quantized in the usual way).

Ĉ Ψ(φ, v) = 0 (8)

With a full quantum theory available, one can construct self-adjoint

observables and extract physical predictions.

Complete set of observables: field momentum πφ and the volume v

One can choose a semiclassical state, sharply peaked on a classical
trajectory at late times, and evolve the state numerically using the quantum
hamiltonian constraint. The expectation values of the observables can then
be computed and compared with the classical trajectory.

It turns out that the state does not encounter the big bang: it bounces at a
certain volume (determined by the field momentum πφ).

For sharply peaked states, the bounce always occur when the energy density
of the field reaches a value

ρcrit ≈ 0.41ρPlanck



Big Bounce

Expectation values of the volume plotted against internal time φ

(Ashtekar, Pawlowski and Singh)



Wave function at the Bounce

(Martín-Benito, Mena Marugán and Olmedo)



Characteristics of the Big Bounce

Semiclassical states remain peaked. The trajectory deviates from GR only for
ρ ≈ 0.01ρcrit.

The physical scale for the emergence of quantum corrections is universal:
ρcrit ≈ 0.41ρPl .

The matter density is BOUNDED by ρcrit.

Hubble rate also has an upper bound.

The trajectory of the wave function peak matches quite well an EFFECTIVE
classical dynamics trajectory, obtained from semiclassical analysis
techniques.



Effective dynamics

Obtained from effective Hamiltonian (improved dynamics)

C = − 3
4γ2

sin2(µ0b)

µ0
|v |+ Cmatter , (9)

where
b = c/|p|1/2, v = sgn(p)|p|3/2 (10)

Modified Friedmann equation:

H2 =
8πG

3
ρ
(

1− ρ

ρcrit

)
, ρcrit = 0.41ρPl (11)

Also modified Raychaudhuri equation

Numerical simulations for various models show that GR is a good
approximation already when ρ ≈ 0.01ρcrit



Singularity resolution fairly generic in LQC

Using effective equations, P. Singh as shown that all strong singularities are
RESOLVED in flat FLRW (for any kind of matter content).

[Essentially, singularities are avoided in all cases for which ρ→∞, H →∞,
classically]

Similar results were obtained for other homogeneous models, e.g. k = ±1
FRW and also anisotropic models (Bianchi I, II and IX)

Effective dynamics are used, but numerical simulations confirm the existence
of the bounce.

Also very good indications for inhomogeneous models. Gowdy models with
hybrid approach.



k=1 model


