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Introduction: McVittie paper

1
9
3
3
M
N
R
A
S
.
.
9
3
.
.
3
2
5
M

Figure: Grey regions contain singular solutions.



Introduction: McVittie paper - citations

Figure: Citations from inspirehep.net, 82 years



Introduction: McVittie spacetime

Some references on the structure of McVittie spaceitme
• B. C. Nolan (PRD 58, 1998): “A point mass in an isotropic universe:

Existence, uniqueness, and basic properties”.
– “A point mass in an isotropic universe: II. Global properties" (CQG 16,
1227, 1999).
– “A point mass in an isotropic universe: III. The region R≤ 2m” (CQG
16, 3183 ,1999).

• N. Kaloper, M. Kleban, D. Martin (PRD 81, 2010): “McVittie’s legacy:
Black holes in an expanding universe”.
– Progress on understanding the global structure.

• K. Lake, M. Abdelgader (PRD 84, 2011): “More on McVittie’s legacy:
A Schwarzschild–de Sitter black and white hole embedded in an
asymptotically ΛCDM cosmology”.
– Maximal analytic extension.



Introduction: McVittie spacetime

Some references on the structure of McVittie spaceitme
• V. Faraoni, A. F. Zambrano-Moreno, R. Nandra (PRD 85, 2012):

“Making sense of the bizarre behavior of horizons in the McVittie
spacetime”.

• A. Maciel da Silva, M. Fontanini, D. C. Guariento (PRD 87, 2013):
“How the expansion of the Universe determines the causal structure of
McVittie spacetimes”.



Charged objects in expanding universes

Some references
• P. C. Vaidya, Y. P. Shah (Current Science 66, 1966): “The gravitational

field of a charged particle embedded in an expanding universe”
– Modifications of the extremal Reissner-Nordström metric.

• Y. P. Shah, P. C. Vaidya (Tensor 9, 1968): “The gravitational field of a
charged particle embedded in a homogeneous universe”
– It is a generalization of the McVittie metric including electric charge.

• D. Kastor, J. Traschen (Phys. Rev. D 47, 1993): “Cosmological
multi-black-hole solutions”.
– Extremely charged black holes.
– Exact solution for coalescing black holes.

• C. J. Gao, S. N. Zhang (Phys. Lett. B 28, 2004):
– Similar to the solution by Shah & Vaidya, made further analysis.



Charged objects in expanding universes

Some references
• M. L. McClure, C. C. Dyer (CQG 23, 2006): “Asymptotically Einstein–

de Sitter cosmological black holes and the problem of energy
conditions”.
– Analyzed some charged static solutions.

• G. W. Gibbons, K.-I. Maeda (PRL 104, 2010), “Black Holes in an
Expanding Universe”
– Generalized Kastor & Traschen work to p = ωρ cosmic fluid.



Rotating objects in expanding universes

Some references
• P. C. Vaidya (Pramana 8, 1977): “Kerr metric in cosmological

background”.
– Obtained the apparent horizon (He called event horizon). Asymptotic
to flat FLRW metric

• S. N. G. Thakurta, (Indian J. Phys 55B, 1981): “Kerr metric in an
expanding universe”.
– Conformal to Kerr in Boyer-Lindquist coordinates. Asymptotic to
general FLRW.

• P. C. Vaidya (Pramana 22 , 1984): “Kerr metric in the de Sitter
background”.



Rotating charged objects in expanding universes

• L. K. Patel and H. B. Trivedi (J. Astrophys. Astron. 3, 1982).
“Kerr-Newman metric in cosmological background”.
– Followed Vaidya (Pramana 8, 1977).



The McVittie metric - flat FLRW background

A recipe?
• Write the Schwarzschild black hole solution in isotropic coordinates
• Change the “radial” coordinate r to a(t)r, a(t) to be interpreted as the

cosmological scale factor.

The McVittie metric (MNRAS, 1933) is usually written in the form

ds2 = a2(t)
(
1+

m
2ra(t)

)4(
dr2 + r2dΩ

2)−(
1− m

2ra(t)

)2(
1+

m
2ra(t)

)−2

dt2,

where m is a constant.

Or, using the areal radial coordinate R = a(t)r
(

1+
m

2a(t)r

)2

,

ds2 =−
(
F2−H2R2)dt2− 2HR

F
dRdt +

dR2

F2 +R2dΩ
2 , (1)

F(R) =

√
1− 2m

R
, and H(t) =

ȧ
a

is the Hubble factor.



The McVittie metric - Singularity and horizons

Curvature singularity at F(R) = 0⇒ R = 2m.

Apparent horizons (zeros of the expansion of outgoing null geodesics):

−H2(t)R2 +
(

1− 2m
R

)
= 0.



The McVittie metric - global structure
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Figure: Apparent horizons - McVittie spacetime: a(t) asymptotes a de Sitter
expansion (from Silva, Fontanini, Guariento - PRD, 2013)



The McVittie metric - global structure
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Figure: A possible maximal analytical extension of McVittie spacetime (from Silva,
Fontanini, Guariento - PRD, 2013)



Our work

• Motivated by the work of M. L. McClure & C. C. Dyer (CQG 23, 2006).
• Investigate the possible electromagnetic sources, singularities and

apparent horizons.
• The charged McVittie solution is revisited
• Charged versions of solutions originally put forward by Vaidya (Vd),

Sultana and Dyer (SD), and Thakurta are also analyzed.



Charged objects in expanding spacetimes: general metric

The generic metric
A sufficiently general metric for all cases we are interested here is of the form

ds2 =−f0(r, t)dt2 +a2(t) f1(r, t)dr2 +2a(t) f2(r, t)dt dr +a2(t)r2 f3(r, t)dΩ
2,

t= cosmological time, r= spherical coordinate, a(t)= the expansion factor,
dΩ2 is the metric on the unit sphere.

The scale factor a(t):
• Case (a): used by Lake & Abdelgader (PRD84,2011)

a(t) =
[

sinh
(

3k t
2

)]2/3

, k being a constant to be chosen appropriately.

– Initial power-law expansion with a(t)∼ t2/3 and a final de Sitter
accelerated phase a(t)∼ ekt.

• Case (b): a(t) = tα , with constant α .
– Perfect fluid whose equation of state is of the form p = ω ρ , with
ω = (2−3α)/2. Our choice is α = 2/3, and so ω = 0.



Charged objects in expanding spacetimes: general metric

The Maxwell equations

The Maxwell equations (Ftr =−Frt ≡ E(r, t)) give the two relations

∂Q(r, t)
∂ r

= 4πa3(t)r2f3(r, t)g1(r, t)Jt(r, t), (2)

∂Q(r, t)
∂ t

=−4π a3(t)r2f3(r, t)g1(r, t)Jr(r, t), (3)

Q(r, t)≡ a3(t)r2f3(r, t)g1(r, t)E(r, t), (4)

with Jt(r, t) and Jr(r, t) being the only nonzero components of the
electromagnetic current-density. g1

2(r, t)≡ f0(r, t) f1(r, t)+ f22(r, t).
Jt(r, t) = 0⇒ Q = q0h(t), q0 constant, h(t) arbitrary.

E(r, t) =
q0h(t)

a3(t)r2f3(r, t)g1(r, t)
, (5)

Jr(r, t) =− q0ḣ(t)
4πa3(t)r2f3(r, t)g1(r, t)

. (6)



Charged McVittie

ds2 =− f 2(r, t)
g2(r, t)

dt2 +a2(t)g2(r, t)
(
dr2 + r2dΩ

2) , (7)

f (r, t) = 1− m2

4a2(t)r2 +
q2

4a2(t)r2 , g(r, t) =
(

1+
m

2a(t)r

)2

− q2

4a2(t)r2 . (8)

Q(r, t) = q0h(t); E(r, t) =
q0h(t)

a3(t)r2f (r, t)g2(r, t)
.

–The solution presented by Shah & Vaidya (Tensor 19, 1968, also Gao &
Zhang, PLB 595, 2004) assumes h(t) = 1.
–Leading to Q(r, t) = q0 = constant, so that q0 = q, q is the charge parameter
of the metric.

Jµ(r, t) = 0 for a3(t)r2f (r, t)g2(r, t) 6= 0.



The charged McVittie metric - Singularity and horizons

The areal radius: R = a(t)r g(r, t) = a(t)r
(

1+
M

2a(t)r

)2

− Q2

4a(t)r
.

Curvature singularity at
F(R) = 1−2M/R+Q2/R2 = 0 =⇒ R± = 2M±

√
M2−Q2.

Apparent horizons (zeros of the expansion of outgoing null geodesics):

−H2(t)R2 +
(

1− 2M
R

+
Q2

R2

)
= 0.



The charged McVittie metric - global structure
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Figure: The evolution of the apparent horizons as a function of the time t of the
charged McVittie spacetime, for two different expansion factors a(t) of case (a) and
case (b), as indicated. The plots are for M = 2.0, Q = 1.0. The singularity at R = R+
is indicated. For late times, there are two apparent horizons (similar to the uncharged
case). See also V. Faraoni, A. F. Zambrano-Moreno, A. Prain, PRD 89, 2014.



Charged Vaidya type metric

The metric

ds2 = a2(t)
[
dr2 + r2dΩ

2]+[
2m(t)

r
− q2(t)

r2

][
dt

a(t)
+dr

]2

−dt2, (9)

• Original Vaidya (cosmological) metric: m(t) = constant, q(t) = 0.
• Faraday-Maxwell tensor field is Ftr ≡ E(r, t) = q0h(t)/a3(t)r2, q0 being

a constant.
• Q(r, t) = q0h(t), q0 = constant, h(t) arbitrary.
• Choosing h(t) = 1, i.e., E(r, t) = q0/a3(t)r2, with constant q0, the

Maxwell equations are satisfied with zero current-density, Jµ(r, t) = 0
for a3(t)r2 6= 0.



Charged Vaidya type metric - apparent horizons
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Figure: The evolution of the apparent horizons as a function of the time t of the
charged Vaidya spacetime, for two different expansion factors a(t), of case (a) and
case (b), as indicated. The plots are for M = m = 2.0, Q = q = 1.0. The singularity at
R = 0 is indicated.



Charged Sultana-Dyer type metric

The metric

ds2 = a2(t)
[
dr2 + r2dΩ

2]+
[

2m(t)
r

− q2(t)
r2

]
[dt +a(t)dr]2−dt2, (10)

• Original SD (GRG 37, 2005) metric: m(t) = constant, q(t) = 0.
• Equals the Vaidya metric if ma2(t)→ m and qa(t)→ q.
• Faraday-Maxwell tensor field is Ftr ≡ E(r, t) = q0h(t)/a3(t)r2, q0 being

a constant.
• Q(r, t) = q0h(t), q0 = constant, h(t) arbitrary.
• Solution of McClure-Dyer (CQG, 2006): h(t) = a(t), the Maxwell

equations are satisfied with nonzero current-density,
Jr(r, t) =−q0H(t)/(4πa2(t)r2).

• Choosing h(t) = 1 (our choice), i.e., E(r, t) = q0/a3(t)r2, with constant
q0 = q⇒ constant electric charge of the source.



Charged static Thakurta type metric
The metric

ds2 =−
(

1− 2m(t)
r

+
q2(t)

r2

)
dt2 +

a2(t)dr2

1− 2m(t)
r

+
q2(t)

r2

+a(t)2r2dΩ
2, (11)

• Original Thakurta (cosmological) metric: m(t) = constant, q(t) = 0.
• Faraday-Maxwell tensor field as Ftr ≡ E(r, t) = q0h(t)/a3(t)r2, q0=

constant.
• Q(r, t) = q0h(t), q0 = constant, h(t) arbitrary.
• Solution of McClure-Dyer (CQG, 2006): h(t) = a(t), the Maxwell

equations are satisfied with nonzero current-density,
Jr(r, t) =−q0H(t)/(4πa2(t)r2).

• Choosing h(t) = 1, i.e., E(r, t) = q0/a3(t)r2, with constant q0 = constant
= electric charge of the source.

• Last choice implies modifications also in energy-momentum, but the
singularity at spacetime region where f (r, t) = 0 is not removed.



Charged Thakurta type metric - apparent horizons
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Figure: The evolution of the apparent horizons as a function of the time t in the
undercharged case of the charged Thakurta spacetime, for two different expansion
factors. The plots are for M = m(t)a(t) = 1.0, Q = q(t)a(t) = 0.5, a(t) of case (a),
and a(t) of case (b), as indicated. The singularity at R = R+ is indicated. For late
times, there are three apparent horizons.



Summary/Conclusion

– A brief historical review of black hole solutions in expanding backgrounds
was given

– Investigated the electromagnetic sources of Vaidia, Sultana-Dyer and
Thakurta metrics

– The singularities and apparent horizons were found for each case

– Some progress on understanding the global structure of the mentioned
spacetimes has been made.



Thank You!
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