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Outline

• Basic formalism of the medium electrodynamics

• Fresnel equation and its geometric interpretation

• Non-minimal Einstein-Maxwell model with traceless susceptibility tensor

• Newman-Penrose formalism

• Properties associated with Fresnel equations

• Canonical form of dispersion relations, indicatrices, and optical metrics.
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Basic formalism of the medium electrodynamics

The Einstein-Maxwell theory deals with the action functional

S(EM) =

∫
d4x
√
−g

(
R +

1

2
C ikmnFikFmn

)
, (1)

The information concerning specific features of interactions in the electro-
magnetically active medium (or quasi-medium) is encoded in the linear re-
sponse tensor C ikmn. Due to the structure of the second term in (1) this tensor
possesses evident symmetry of indices

C ikmn = −Ckimn = Cmnik = −C iknm . (2)

Variation of the action functional (1) with respect to potential Ai yields the
electrodynamic equations

∇k

(
C ikmnFmn

)
= 0 . (3)

In the vacuum the linear response tensor has the simplest form

C ikmn
(vac) = gikmn ≡ 1

2
(gimgkn − gingkm) . (4)

The difference χikmn ≡ C ikmn − gikmn is called the susceptibility tensor.
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Fresnel equation

In the geometrical optics approach the potential four-vector and the field
strength tensor can be represented, respectively, as

Ap = ape
iΘ , Fpq = i(kpAq − kqAp) , (5)

where Θ is the phase, ap is a slowly varying amplitude, and kp is a wave four-
vector, the gradient of the phase: km = ∇mΘ.
In the leading-order approximation, the Maxwell equations can be reduced to

the system of algebraic equations

Cpqrsk
qkras = 0 . (6)

This set of linear equations with respect to as admits nontrivial (as � ks) solu-
tions, when the four components of kp satisfy the dispersion (or Fresnel) equa-
tion:

Gpqrskpkqkrks = 0 , Gpqrs = −4

3
C ipmqCkrns ∗C∗ikmn , (7)

where ∗C∗ikmn ≡ 1
4εiklsC

lspqεmnpq is a double-dual linear response tensor.

The completely symmetric tensor G(pqrs) is known as the Tamm-Rubilar ten-
sor.
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Geometric interpretation

The dispersion relation

T (k) ≡ Gpqrskpkqkrks = 0 (8)

is a quartic homogeneous equation in the wave vector components ks. This
equation gives the wave vector ki up to a factor.

In a geometric point of view, the dispersion equation T (k) = 0 defines a surface
in a three-dimensional projective space RP 3.

Four conditions
∂T (k)

∂ks
= G(pqrs)kpkqkr = 0 (9)

determine positions of singular points of this surface.

The classification of types of the dispersion equations is firmly associated
with the classification of quartic surfaces in RP 3.
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Non-minimal Einstein-Maxwell model

The action functional is of the form

S(NMEM) =

∫
d4x
√
−g

{
R +

1

2
FikF

ik +
1

2
χikmnFikFmn

}
, (10)

The non-minimal susceptibility tensor χikmn is defined as follows

χikmn ≡ q1

2
R (gimgkn − gingkm) +

+
q2

2
(Rimgkn −Ringkm + Rkngim −Rkmgin) + q3R

ikmn , (11)

where q1, q2, q3 are the phenomenological parameters describing the non-minimal
coupling of electromagnetic and gravitational fields.
The variation of the action functional with respect to potential Ai yields

∇i(C
ikmnFmn) = 0 ,

Cikmn =
1

2
(gimgkn − gingkm) + χikmn .

We can describe the non-minimal Einstein-Maxwell model in terms of
(quasi)medium electrodynamics, where C ikmn corresponds to the linear re-
sponse tensor.
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Traceless susceptibility tensor

The main purpose of this work is to classify the dispersion relations for the
case

χpqrs g
qs = 0 , (12)

when the susceptibility tensor is traceless.
Suitable situations:

1. The Ricci tensor vanishes, Rpq = 0; for example, Schwarzschild space-time,
Kerr space-time, etc.

2. The susceptibility tensor is proportional to the Weyl tensor,

χpqrs = qWpqrs, q1 =
q

3
, q2 = −q, q3 = q.

For these models, we can apply Petrov’s scheme to classify the tensor χikmn
and the dispersion relations.
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Newman-Penrose formalism

In order to realize the Petrov classification scheme, we will follow the stan-
dard Newman-Penrose formalism.

Newman-Penrose null tetrad:

ep1 = lp , ep2 = mp , ep3 = m̄p , ep4 = np ,

lplp = npnp = mpmp = m̄pm̄p = 0 , lpmp = lpm̄p = npmp = npm̄p = 0 ,

lpnp = 1 , mpm̄p = −1

Five scalars related to the susceptibility tensor:

Ψ0 = −χpqrslpmqlrms , Ψ1 = −χpqrslpnqlrms , Ψ2 = −χpqrslpmqm̄rns ,

Ψ3 = −χpqrslpnqm̄rns , Ψ4 = −χpqrsnpm̄qnrm̄s

Space-time metric:

gpq = lpnq + lqnp −mpm̄q −mqm̄p
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Properties of the Tamm-Rubilar tensor-1

The tensor G(pqrs) constructed from the traceless susceptibility tensor has 25
independent components and can be represented as

G(pqrs) = [1− 2 Re(I)− 4 Re(J)] g(pqgrs) +H(pqrs),

where H(pqrs)gpq = 0 and I, J are the invariants of the susceptibility tensor:

I = Ψ0Ψ4 − 4Ψ1Ψ3 + 3Ψ2
2, J =

∣∣∣∣∣∣
Ψ0 Ψ1 Ψ2

Ψ1 Ψ2 Ψ3

Ψ2 Ψ3 Ψ4

∣∣∣∣∣∣ ,
Re(I) =

1

16
χikmnχ

ikmn, Re(J) = − 1

96
χikmnχ

ikpqχpq
mn.

The tensor H(pqrs) satisfies the indentity

H(pqrs)H(pqrm) =

[
16

3
|I|2(2 Re(I)− 3) + 32|I + 3J |2

]
δsm.
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Properties of the Tamm-Rubilar tensor-2

a) If Ψ0 = 0, then T (l) = Gpqrslplqlrls = 0;

b) If Ψ4 = 0, then T (n) = Gpqrsnpnqnrns = 0;

c) If Ψ0 = Ψ1 = 0, then
∂T (k)

∂ks

∣∣∣∣
k=l

= G(pqrs)lplqlr = 0;

d) If Ψ3 = Ψ4 = 0, then
∂T (k)

∂ks

∣∣∣∣
k=n

= G(pqrs)npnqnr = 0.

When
Gpqrskpkqkrks = (gpqA kpkq) · (g

rs
B krks) , (13)

tensors gpqA , g
pq
B are called as optical metrics. Light propagates along null

geodesics of these auxiliary space-times.
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Indicatrices

In order to visualize solutions to the Fresnel equation we will draw optic
indicatrices. We will define

k1 =
1− x√

2
, k2 =

y√
2

eiϕ, k3 =
y√
2

e−iϕ, k4 =
1 + x√

2
.

Here k1 = kpl
p, k2 = kpm

p, k3 = kpm̄
p, k4 = kpn

p are the tetrad components of
the wave four-vector.

Singular points of the surface T (k) = 0 relates to singular points (or intersec-
tion points) of the corresponding indicatrix.

As a result:

Type O — no intersection points,
Type N — one intersection point,
Types D and III — two points,
Type II — three points,
Type I — four points.

When the optical metrics exist, the indicatrix (quartic surface) splits into two
quadric surfaces. Examples can be found below.
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Type O
(Ψ0 = Ψ1 = Ψ2 = Ψ3 = Ψ4 = 0)

When the susceptibility tensor χpqrs vanishes, the tensor G(pqrs) and the dis-
persion equation take the simplest form

G(pqrs) = g(pqgrs) ,

G(pqrs)kpkqkrks = (2k1k4 − 2k2k3)2 = 0 .

Plot of the indicatrix (ϕ is arbitrary):
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Type N
(Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0 , Ψ4 6= 0)

Canonical form of the Fresnel equation:

G(pqrs)kpkqkrks = (2k1k4 − 2k2k3 + 2|Ψ4|k2
1)(2k1k4 − 2k2k3 − 2|Ψ4|k2

1) = 0.

Plot of a typical indicatrix (ϕ is arbitrary):

For the type N, the quartic surface splits into two ellipsoids of revolution. We
deal with the birefringence phenomenon in this case.
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Type N
(Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0 , Ψ4 6= 0)

Optical metrics:

gpqA = gpq + 2 |Ψ4| lp lq = lpnq + lqnp −mpm̄q −mqm̄p + 2 |Ψ4| lp lq ,

gpqB = gpq − 2 |Ψ4| lp lq = lpnq + lqnp −mpm̄q −mqm̄p − 2 |Ψ4| lp lq .
lp — the principal null direction of the susceptibility tensor

χpqrsl
s = 0 .

Polarization vectors (ki 6= li):

A : ai = kp [Ψ4(mpli − lpmi) + |Ψ4|(m̄pli − lpm̄i)] ,

B : ai = kp [−Ψ4(mpli − lpmi) + |Ψ4|(m̄pli − lpm̄i)] .

These vectors are non-null and orthogonal to each other:

gika
i
Aa

k
A 6= 0, gika

i
Ba

k
B 6= 0, gika

i
Aa

k
B = 0.
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Type D
(Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 , Ψ2 6= 0)

Canonical form of the Fresnel equation:

G(pqrs)kpkqkrks = (1− 2 Re Ψ2)2 (1 + 4 Re Ψ2) (2k1k4 − 2µk2k3)(2k1k4 −
2

µ
k2k3) = 0,

µ =
|1 + 2Ψ2 − Ψ̄2| + 3|Ψ2|
|1 + 2Ψ2 − Ψ̄2| − 3|Ψ2|

.

Plot of a typical indicatrix (ϕ is arbitrary):

For the type D, the quartic surface splits into two ellipsoids of revolution. The
space-time behaves as a uniaxial medium, and we deal with the birefringence
phenomenon.
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Type D
(Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 , Ψ2 6= 0)

Optical metrics:
gp qA = lpnq + lqnp − µ(mpm̄q + mqm̄p) ,

gp qB = lpnq + lqnp − µ−1(mpm̄q + mqm̄p),

µ =
|1 + 2Ψ2 − Ψ̄2| + 3|Ψ2|
|1 + 2Ψ2 − Ψ̄2| − 3|Ψ2|

.

lp and np — two different principal null directions of the susceptibility tensor

χp q r [slt]l
qlr = χp q r [snt]n

qnr = 0 .

Polarization vectors (ki 6= li, ki 6= ni):

A : ai = kp [S(lpni − npli) + mpm̄i − m̄pmi] ,

B : ai = kp [lpni − npli + S(mpm̄i − m̄pmi)] ,

S =
i

Im Ψ2

|1 + 2Ψ2 − Ψ̄2|Re Ψ2 − (1 + Re Ψ2)|Ψ2|
|1 + 2Ψ2 − Ψ̄2| + 3|Ψ2|

.

When Ψ2 is real and positive, S vanishes.
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Type III
(Ψ0 = Ψ1 = Ψ2 = 0 , Ψ4 = 2Ψ2

3 6= 0)

Canonical form of the Fresnel equation:

G(pqrs)kpkqkrks =
(
2k1k4 − 2k2k3 − 4|Ψ3|2k2

1

)2 − 64|Ψ3|2k2
1k2k3 = 0

Plot of a typical indicatrix (ϕ is arbitrary):

For the type III, the quartic surface does not split into two quadric surfaces.
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Type II
(Ψ0 = Ψ1 = 0 , 2Ψ2

3 = Ψ4(1 + 2Ψ2 + 2Ψ̄2) , Ψ2 6= 0)

Canonical form of the Fresnel equation:

G(pqrs)kpkqkrks =

{[(
|1+2Ψ2−Ψ̄2|2−9|Ψ2|2

)
(2k1k4−2k2k3)−4|k1Ψ3−3k3Ψ2|2

]2
− 16|1+2Ψ2−Ψ̄2|2|2k1Ψ3 − 3k3Ψ2|2k2k3

}
(1 + 4 Re Ψ2)−1 = 0.

Plot of a typical indicatrix (ϕ = 0 for the left panel, ϕ = π/2 for the right
panel):

For the type II, the quartic surface does not split into two quadric surfaces.
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Type I
(the algebraically general type)

Plots of indicatrices (Ψ0 = Ψ4 = −0.15 + 0.1i, Ψ1 = Ψ3 = 0, Ψ2 = 0.15):

ϕ = +0.3 ϕ = −0.3
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Type I
(the algebraically general type)

Plots of indicatrices (Ψ0 = Ψ4 = 0.07, Ψ1 = Ψ3 = 0, Ψ2 = 0.15):

ϕ = 0 ϕ = π/2
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Thank you for your attention!
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