n-DBI gravity

Flávio S. Coelho¹, Carlos Herdeiro¹, Shinji Hirano and Yuki Sato

¹Departamento de Física Universidade de Aveiro, Portugal

CENTRA - IST, Lisboa, 18th April 2013

Outline

2 Properties and Black Hole Solutions

Ost-Newtonian Expansion

Scale Invariance and Inflation

- Observations suggest that the Universe is nearly scale invariant at early and late times, when it is believed to be approximately de Sitter space.
- At the present epoch, the accelerating expansion is thought to be driven by a nearly constant vacuum energy.
- To explain the inflation phase after the Big Bang, most current models involve a scalar field, the *inflaton*, which acts as the agent of the nearly exponential expansion of the Universe.
- However, the nature of such a field is far from clear from the Particle Physics point of view.

A new model of Gravity

Action for n-DBI Gravity

$$S = -rac{3\lambda}{4\pi G_N^2}\int d^4x \sqrt{-g}\left\{\sqrt{1+rac{G_N}{6\lambda}\left(^{(4)}\!R+\mathcal{K}
ight)}-q
ight\}\,,$$

- λ, q are dimensionless constants that set the scale of inflation and the cosmological constant.
- K = −2(K² + n^α∂_αK), where K is the extrinsic curvature of hypersurfaces orthogonal to n^α.

A new model of Gravity

This model:

- yields the Dirac-Born-Infeld type conformal scalar theory when the Universe is conformally flat.
- reduces to Einstein's gravity with the Gibbons-Hawking-York boundary term in weakly curved spacetimes.

Moreover,

- it breaks Lorentz invariance by introducing a preferred time-like vector field (albeit recovering it the weak curvature limit).
- resembles Hořava-Lifshitz gravity in the sense that we treat time as distinct from space.

The conformally flat Universe

If we consider conformally flat universes, with metric

Friedmann-Robertson-Walker Ansatz

$$ds^{2} = \ell_{P}^{2}\phi(\tau)^{2}(-d\tau^{2} + dx^{2}),$$

we get a conformal scalar theory with equation of motion

Effective Potential for the Scalar Field

$$rac{1}{2}\dot{\phi}^2+V(\phi)=0,\ V(\phi)=-rac{1}{2}\lambda\phi^4\left[1-\left(q+rac{\epsilon}{\lambda\phi^4}
ight)^{-2}
ight].$$

• ℓ_P is the Planck lenght; ϵ is the radiation energy.

The conformally flat Universe

• The model naturally results in inflation at early times, followed by radiation- (and matter-) dominated epochs and subsequent acceleration at late times.

The Universe with a Perfect Fluid

Energy-Momentum Conservation

$$\dot{\rho} + 3H(\rho + p) = 0.$$

Friedmann Equation

$$H^{2} = \frac{\lambda}{G_{N}} \left[1 - \left(q + \frac{4\pi G_{N}^{2}}{3\lambda} \rho \right)^{-2} \right]$$

Raychaudhury Equation

$$\partial_t \left[H\left(q + \frac{4\pi G_N^2}{3\lambda}\rho\right) \right] = -4\pi G_N(\rho + p).$$

Inflation and the Cosmological Constant Problem

- Taking the energy scale of inflation to be $E_{inf} = \sqrt{\lambda} \ell_P^{-1} \sim 10^{15}$ GeV,
- and the current CC $\sim 10^{-12}$ GeV, implying $E_{\Lambda} = \sqrt{\lambda(1-q^{-2})} \ell_P^{-1} \sim 10^{-60} M_P$,
- to generate such a large hierarchy, we need $\lambda \sim 10^{-8}$ and $q \sim 1 + 10^{-110}$.

A large hierarchy is generated between the two effective CC's, $1/\sqrt{1-q^{-2}}$. The required fine-tuning is of the same order as the traditional description.

The vector field n^{α}

- The introduction of the everywhere time-like vector field n^α yields equations which are at most second order in time, albeit higher order in spatial derivatives.
- This is a desirable property to avoid *ghosts* in the quantum theory.
- n^{α} defines a natural foliation of space-time by (constant time) hypersurfaces orthogonal to n^{α} .

ADM decomposition

$$ds^2 = -N^2 dt^2 + h_{ij}(dx^i + N^i dt)(dx^j + N^j dt), \qquad n = -N dt.$$

The gauge group of *n*-DBI gravity

The general diffeomorphism group of General Relativity is broken down into:

Foliation-Preserving Diffeomorphisms

$$t
ightarrow t + \xi^0(t), \qquad x^i
ightarrow x^i + \xi^i(t,x^j).$$

• Quantities such as the shear σ_{ij} and the expansion θ of a congruence of time-like curves with tangent n^{α} acquire an invariant geometric meaning:

$$\sigma_{ij} = K_{ij} - \frac{1}{3}Kh_{ij}, \qquad \theta = K.$$

Einstein's Gravity limit

Einstein's equations can be recovered by taking the limit

$$\lambda \to \infty, \qquad q \to 1,$$

with the product $\lambda(q-1)$ kept fixed.

• We get a CC term

$$\Lambda = \frac{6\lambda(q-1)}{G_N^2}.$$

• Full Lorentz invariance is restored.

Solutions with constant ${\cal R}$

The study of solutions with constant $\mathcal{R} = {}^{(4)}\!\mathcal{R} + \mathcal{K}$ establishes the following theorem

Theorem

Any solution of Einstein's gravity with cosmological constant plus matter, admitting a foliation with constant \mathcal{R} , is a solution of *n*-DBI gravity.

Corollary (maximal slicing)

Any Einstein space admitting a foliation with constant $R - N^{-1}\Delta N$ (hypersurface metric and Ricci scalar), is a solution of *n*-DBI gravity.

E.g. Kerr metric in Boyer-Lindquist coordinates.

Black Hole Solutions

If we require spherical symmetry and include a Maxwell field, we get the RN-(A)dS black hole metric, albeit in an unusual set of coordinates. The cosmological constant is an integration constant

$$\Lambda_C = rac{3\lambda}{G_N^2}(2qC-1-C^2), \qquad C \equiv \sqrt{1+rac{G_N}{6\lambda}\mathcal{R}}.$$

Thus, asymptotically $(r \rightarrow \infty)$, we can get either de Sitter, Anti-de Sitter or Minkowski space, depending on the value of *C*.

What are the degrees of freedom of *n*-DBI gravity?

- The breaking of Lorentz invariance down to FPD's should give rise to extra degrees of freedom.
- Local degrees of freedom can be computed using Dirac's theory of constraints.
- In addition to the 2 graviton polarizations of General Relativity, *n*-DBI has an extra *scalar* mode.

The dynamics of the scalar graviton

- In the 3+1 formulation of General Relativity, the Hamiltonian constraint is automatically preserved by the evolution equations.
- In *n*-DBI, its time evolution gives an equation for the scalar mode

$$\Delta \dot{\chi} - K N \Delta \chi - \left(N \partial^{i} K + 2 K \partial^{i} N \right) \partial_{i} \chi - N^{-1} \Delta N \dot{\chi} = 0 \,,$$

where

$$\chi \equiv \left(1 + \frac{G_N}{6\lambda} \mathcal{R}\right)^{-1/2}$$

Taming the scalar mode

- Extensions of original HL model [BPS 2009] have improved the behaviour by the addition of $N^{-1}\partial_i N$ terms.
- This appears naturally in n-DBI

$$\mathcal{R} = R + K_{ij}K^{ij} - K^2 - 2N^{-1}\Delta N.$$

- HL has the combination $K_{ij}K^{ij} \lambda K^2$ and the GR limit $\lambda \to 1$ is usually ill-defined.
- *n*-DBI has $\lambda = 1$.

Perturbations around flat space

Consider scalar perturbations around Minkowski space-time

$$N = 1 + \phi , \qquad N_i = \nabla_i B,$$

$$h_{ij} = \delta_{ij} - 2 \left(\delta_{ij} - \frac{\nabla_i \nabla_j}{\triangle} \right) \psi - 2 \frac{\nabla_i \nabla_j}{\triangle} E ,$$

In GR, we can gauge-fix $B=\phi=$ 0, and the equations of motion yield

$$\ddot{E} = \ddot{\psi} = \bigtriangleup \psi = \mathbf{0}$$
 .

Thus there is no propagating degree of freedom.

Perturbations around flat space

In *n*-DBI, we can gauge-fix E = 0. The scalar mode is manifest in the general solution

$$\begin{array}{lll} B(t,x) &=& B_0(x) + B_1(x)t \,, \\ \phi(t,x) &=& -B_1(x) - \psi_0(x) \,, \\ \psi(t,x) &=& \psi_0(x) \,, \\ \psi_0(x) &=& -\frac{G_N}{6\lambda} \left(\Delta B_1 + \frac{3}{2} \Delta \psi_0 \right) \,. \end{array}$$

The pair of free functions $\{B_0(x), B_1(x)\}$ represents 1 degree of freedom in the Hamiltonian formalism.

Vanishing Lapse

- In HL gravity, it was found [Henneaux 2010] that in asymptotically flat space-times, the lapse must vanish: the time flow of the hamiltonian constraint yields a new constraint.
- In *n*-DBI, due to its non-linear lapse dependence, the time flow of the hamiltonian constrain determines a Lagrange multiplier instead.
- No additional constraint is imposed on the lapse.

Strong Coupling

- Naively, *n*-DBI admits the GR limit $\lambda \to \infty$ and $q \to 1$ with $\lambda(q-1)$ fixed.
- It is subtle whether the scalar couple decouples in the IR (eg. vDVZ discontinuity).
- HL suffers from a similar strong coupling problem: the scalar mode becomes strongly coupled at $\Lambda_s = \sqrt{\lambda_{HL} 1}M_P$.

Strong Coupling in n-DBI

In *n*-DBI, the scalar mode action in flat space (to third order) is

$$S=rac{1}{192\pi\lambda}\int d^4x\left[rac{1}{2}(\Delta\dotarphi)^2-(\dotarphi\Delta\ddotarphi-\partial_iarphi\Delta\partial^i\dotarphi)\Deltaarphi+rac{5(\Delta\dotarphi)^3}{12\lambda M_P^2}
ight]$$

• The most *relevant* terms are of the middle type and actually (classically) *marginal*.

Strong Coupling in n-DBI

For the cubic terms with coupling $g = \sqrt{\lambda}$, the beta function is $\beta(g) = -cg^3$ from which

$$g^2 = g_0^2 \left(1 + 2cg_0^2 \ln \frac{\Lambda}{M_P}\right)^{-1}$$

• Strong coupling scale: $\Lambda_s \sim M_P \exp\left(-\frac{1}{2c\lambda}\right)$.

• If c < 0, then for $\lambda \to \infty$, $\Lambda_s \sim M_P$.

Short distance instability

- In HL, the scalar graviton develops an exponential short distance instability in generic spacetimes.
- No such solution, of the type

$$(\phi,\gamma) \sim (\phi(\omega,p),\gamma(\omega,p))e^{i\omega t + ip\cdot x},$$

is found in *n*-DBI, except for $\omega = 0$.

• The scalar mode is neither oscillating nor exponentially growing (to linear order).

Non-linear (in)stability?

To study the fully non-linear stability of the scalar mode, it is useful to work in the Einstein frame, in which the action becomes

$$S \sim \int d^4 x \sqrt{-g} \left[{}^{(4)}R - 6(n^{\alpha}n^{\beta} + h^{\alpha\beta})\partial_{\alpha}\chi\partial_{\beta}\chi + 2\mathcal{K}\chi + V(\chi) \right] ,$$

$$V(\chi) = \frac{6\lambda}{G_N} \frac{(e^{\chi} - e^{-\chi})^2 + 2(1-q)}{e^{4\chi}} .$$

• The auxiliary field χ is *not* the scalar mode, but a linear analysis around flat space shows that it is essentially its time derivative, i.e $\chi \sim \dot{\phi}$.

Non-linear (in)stability?

The equation of motion for χ in the gauge $N^i = 0$ is

$$\partial_t (N^{-2} \dot{\chi}) + \Delta \chi - \frac{1}{3} \partial_t (N^{-1} K) - \frac{1}{12} V'(\chi) = 0.$$

For curvature length scale L,

- Repulsive force $-N^2\Delta\chi = N^2p^2\chi$.
- Friction $\partial_t \ln N^2 \dot{\chi} = L^{-1} \dot{\chi}$.
- External force $\frac{1}{3}N^2\partial_t(N^{-1}K) \sim L^{-2}$.

These are dominant for small χ and may work against stability. However, we've seen that to linear order the scalar mode is stable.

Non-linear (in)stability?

For larger χ , the dominant term is the strongly attractive force $\frac{1}{12}N^2V'(\chi)$. Hence it seems plausible that the solution oscillates around $\chi = 0$.

< 同 ▶

Parameterized Post-Newtonian Formalism

$$U \sim v^2 \sim p/\rho \sim \Pi \sim O(2), \qquad \frac{\partial/\partial t}{\partial/\partial x} \sim O(1), \qquad (1)$$

010

- U: Newtonian potential
- v: 3-velocity of fluid element
- p: pressure
- ρ : rest-mass density
- Π: energy density / rest-mass density

Parameterized Post-Newtonian Formalism

- Expand field equations around background cosmological solution.
- Expand any additional gravitational fields (scalar, vector, tensor...).
- Find g_{00} to O(4), g_{0i} to O(3) and g_{ij} to O(2).

Metric in PPN gauge

$$g_{00} = -1 + 2U - 2\beta U^{2} - 2\xi \Phi_{W} + (2\gamma + 2 + \alpha_{3} + \zeta_{1} - 2\xi) \Phi_{1} + 2(3\gamma - 2\beta + 1 + \zeta_{2} + \xi) \Phi_{2} + 2(1 + \zeta_{3}) \Phi_{3} + 2(3\gamma + 3\zeta_{4} - 2\xi) \Phi_{4} - (\zeta_{1} - 2\xi) A - (\alpha_{1} - \alpha_{2} - \alpha_{3}) w^{2} U - \alpha_{2} w^{i} w^{j} U_{ij} + (2\alpha_{3} - \alpha_{1}) w^{i} V_{i},$$
(2)
$$g_{0i} = (...)$$
(3)
$$g_{ij} = (1 + 2\gamma U) \delta_{ij}$$
(4)

- \vec{w} is the velocity of PPN coordinate system w.r.t. Universe rest frame.
- $\vec{w} = 0$ frame suited to compute PPN parameters:

 $\beta, \gamma, \xi, \alpha_1, \alpha_2, \alpha_3, \zeta_1, \zeta_2, \zeta_3, \zeta_4.$ (5)

Preferred-Frame Effects

- GR: $\beta = \gamma = 1$, others vanish.
- $\alpha_1, \alpha_2, \alpha_3$ measure PFE's.
- Perihelion-Shift:

$$\Delta\omega\sim\frac{1}{3}(2+2\gamma-\beta)+\frac{1}{6}(2\alpha_1-\alpha_2+\alpha_3+2\zeta_2)\frac{\mu}{M}+\frac{J_2r^2}{2M\rho}$$

Ordtvedt effect:

$$\eta_{N} \equiv 4\beta - \gamma - 3 - \frac{10}{3}\xi - \alpha_{1} + \frac{2}{3}\alpha_{2} - \frac{2}{3}\zeta_{1} - \frac{1}{3}\zeta_{2}$$

= (4.4 ± 4.5) × 10⁻⁴

A 10

Preferred-Frame Effects

- Geophysical Tests of Preferred-frame/location effects: "Cavendish"-like experiments with Earth, measure variations of G_L (a.k.a. solid-Earth tides);
- Orbital tests for n-bodies.

Significance of PPN parameters

			Value in semi-	Value in fully-
Parameter	What it measures relative to GR	Value in GR	conservative theories	conservative theories
γ	How much space-curvature produced by unit rest mass?	1	γ	γ
β	How much "nonlinearity" in the superposition law for gravity?	1	β	β
ξ	Preferred-location effects?	0	ξ	ξ
α_1	Preferred-frame effects?	0	α_1	0
α_2		0	α_2	0
α_3		0	0	0
α_3	Violation of conservation	0	0	0
ζ_1	of total momentum?	0	0	0
ζ_2		0	< □ > < () > < ≡)	· • ≣ ► 0 ≣ - ∽ °

Current limits on PPN parameters

Parameter	Effect	Limit	Remarks
$\gamma - 1$	time delay	$2 imes 10^{-3}$	Viking ranging
	light deflection	$3 imes 10^{-4}$	VLBI
eta - 1	perihelion shift	$3 imes 10^{-3}$	$J_2 = 10^{-7}$ from helioseismology
	Nordtvedt effect	$6 imes 10^{-4}$	$\eta=$ 4 $eta-\gamma-$ 3 assumed
ξ	Earth tides	10^{-3}	gravimeter data
α_1	orbital polarization	10^{-4}	Lunar laser ranging
		$2 imes 10^{-4}$	PSR J2317+1439
α_2	spin precession	$4 imes 10^{-7}$	solar alignment with ecliptic
α_3	pulsar acceleration	$2 imes 10^{-20}$	pulsar \dot{P} statistics
η^1	Nordtvedt effect	10^{-3}	lunar laser ranging
ζ_1	_	$2 imes 10^{-2}$	combined PPN bounds
ζ_2	binary acceleration	$4 imes 10^{-5}$	\ddot{P}_{p} for PSR 1913+16
ζ_3	Newton's 3rd law	10^{-8}	Lunar acceleration
ζ_4	-	_	not independent

¹Here $\eta = 4\beta - \gamma - 3 - 10\xi/3 - \alpha_1 - 2\alpha_2/3 - 2\zeta_1/3 - \zeta_2/3 + \zeta_2$

Solar System Planetary Precessions

Constraints on the Preferred-Frame α_1 , α_2 parameters from Solar System planetary precessions, L. Iorio, [arXiv:1210.3026], October 2012

•
$$\alpha_1 = (-1 \pm 6) \times 10^{-6}$$

•
$$\alpha_2 = (-0.9 \pm 3.5) \times 10^{-5}$$

Expect improvement from Messenger spacecraft (orbiting Mercury), and Bepi Colombo Mission (2015-2022).

Binary Pulsars

New tests of local Lorentz invariance of gravity with small-eccentricity binary pulsars, L. Shao, N. Wex, [arXiv:1209.4503], September 2012

New Constraints on Preferred Frame Effects from Binary Pulsars, L. Shao, N. Wex, M. Kramer, [arXiv:1209.5171], September 2012

• PSR's J1012+5307, J1738+0333

•
$$\hat{\alpha}_1 = -0.4^{+3.7}_{-3.1} \times 10^{-5}$$
 at 95% C.L.

•
$$|\hat{\alpha}_2| = 1.8 \times 10^{-4}$$
 at 95% C.L.

Expect improvement with next generation of radio telescopes (FAST, SKA).

Horava-Lifshitz gravity

- D. Blas, O. Pujolas, S. Sibiryakov, JHEP 1104:018 (2011)
- D. Blas, H. Sanctuary, Phys.Rev.D 84:064004 (2011)
- Preferred time coordinate \Rightarrow Preferred Frame.
- Extra scalar (spin-0) mode: excitations of foliation structure.

$$ds^2 = -N^2 dt^2 + h_{ij}(dx^i + N^i dt)(dx^j + n^j dt)$$

Restore general covariance:

$$n_{\mu} = -Ndt \Rightarrow n_{\mu} = -\partial_{\mu}\phi/\sqrt{-X}, \qquad X = g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$$

- Stückelberg field $\phi(x)$, dubbed *khronon*.
- Symmetry: $\phi \to f(\phi)$.
- Preferred frame (unitary gauge): $\phi = t$.

Low energy limit: khronometric theory

$$S = -\frac{M_b^2}{2} \int d^4x \sqrt{-g} \left(R + K^{\mu\nu}_{\ \sigma\rho} \nabla_{\mu} u^{\sigma} \nabla_{\nu} u^{\rho} \right) + S_m$$

•
$$\mathcal{K}^{\mu\nu}_{\ \sigma\rho} = \beta \delta^{\mu}_{\rho} \delta^{\nu}_{\sigma} + \lambda \delta^{\mu}_{\sigma} \delta^{\nu} \rho + \alpha u^{\mu} u^{\nu} g_{\sigma\rho}$$

Same form has Einstein-Aether, but no vector (spin-1) mode.

$$c_t^2 = rac{1}{1-eta}\,, \qquad c_s^2 = rac{(lpha-2)(eta+\lambda)}{lpha(eta-1)(2+eta+3\lambda)}$$

- Avoid Cerenkov radiation: $c_t^2 \ge 1, c_s^2 \ge 1$.
- $\beta^{PPN} = \gamma^{PPN} = 1, \xi^{PPN} = 0$ (as GR and AE).

▲ □ ▶ ▲ □ ▶ ▲

- BUT $\alpha_1^{PPN} \neq 0, \alpha_2^{PPN} \neq 0.$
- Also $G_N \neq G_{cosm}$; restricted by $|G_N/G_{cosm} 1| \le 0.13$ by BB nucleosynthesis.

For a point source of mass in its rest frame, $(g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u})$

$$h_{00} = -\frac{2G_Nm}{r} \left(1 - \frac{\alpha_1 - \alpha_2}{2}v^2 - \frac{\alpha_2}{2}\frac{(\vec{x} \cdot \vec{v})^2}{r^2}\right)$$
$$h_{0i} = \frac{\alpha_1}{2}\frac{G_Nm}{r}v^i$$
$$h_{ij} = -\frac{2G_Nm}{r}\delta_{ij}$$

- 4 同 6 4 日 6 4 日 6

э

Gravitational Radiation

In GR, only 2 polarizations \Rightarrow quadrupole formula. Khronometric theory:

$$\langle \dot{\varepsilon} \rangle = -\frac{M_b^2}{4} \int_{S^2_{\infty}} d\Omega r^2 \left\langle \frac{1}{c_t} \dot{t}_{ij} \dot{t}^{ij} - \frac{8(lpha - 2)}{lpha c_s} \dot{\psi}^2 \right\rangle$$

- Waveforms $\dot{t}_{ij}, \dot{\psi}$ depend on $\alpha_1^{PPN}, \alpha_2^{PPN}$.
- Binary system $\Rightarrow \alpha \sim \beta \sim \lambda \leq 10^{-2}$.
- PPN bounds give $\alpha \sim \beta \sim \lambda \sim 10^{-6}$.

n-DBI gravity

$$S = -\frac{3\lambda}{4\pi G_N^2} \int d^4x \sqrt{-g} \left(\sqrt{1 + \frac{G_N}{6\lambda} \left(R - 2\nabla_\mu (n^\mu \nabla_\nu n^\nu) \right)} - q \right) + S_m$$

- khronon field as in HL or khronometric theory
- 2+1 degrees of freedom; scalar free of pathologies (non-propagating?)
- interesting cosmology (vacuum+radiation fluid: inflation, radiation epoch, accelerated expansion)
- $q \sim 1 + 10^{-110}, \qquad \lambda \sim 10^{-8}$
- BUT GR limit is $\lambda \to \infty!$

•
$$\lambda > \lambda_{PPN}$$
, $\lambda < \lambda_{inflation}$

• $\lambda_{PPN} < \lambda < \lambda_{inflation}$??

Result

n-DBI is indistinguishable from GR at post-Newtonian level: can always choose khronon field χ to enforce $\mathcal{R}=0$. True to first order, likely to higher orders.

э

A 10

Scalar Perturbations of FRW

$$ds^{2} = \phi^{2}(\tau) \left[-(1+2A)d\tau^{2} + 2\partial_{i}Bdx^{i}d\tau + (1-2\psi)\delta_{ij}dx^{i}dx^{j} \right]$$

Constraints:

$$a_1A + b_1\Delta B = c_1\dot{\psi} + d_1\psi$$
,
 $a_2A + b_2\Delta B = c_2\dot{\psi} + d_2\psi$,

If $a_1b_2 - a_2b_1 \neq 0$, get canonical action for $\Psi = \sqrt{lpha(au, \Delta)}\psi$,

$$S=\int d^4x \dot{\Psi}^2-\omega^2(au,\Delta)\Psi^2\,.$$

(日) (同) (日) (日) (日)

3

Flat space limit

 $a_1b_2 - a_2b_1 \propto H$. Take the limit $\Lambda \rightarrow 0$ (well defined everywhere):

- Ψ remains, is independent of Λ .
- $\alpha \propto \Lambda^{-1} \Rightarrow \psi \to 0.$

Is this in disagreement with flat space perturbations??

Flat space limit

$$ds^2 = -dt^2 + \phi^2 \delta_{ij} dx^i dx^j$$
, $\phi(t) = \phi_0 + \phi_1 t + \frac{1}{2} \phi_2 t^2 + \dots$

Make coordinate transformation $x^\mu
ightarrow x^\mu + \xi^\mu$,

$$g_{ij} \to g_{ij} + 2\xi_{(i,j)}, \qquad g_{0i} \to g_{0i} + \xi_{i,0} + \xi_{0,i}, \qquad g_{00} \to g_{00} \to g_{00} + 2\xi_{0,0}$$

- choose $\xi_i = \frac{1}{2}\phi_1 t x_i$ to eliminate first derivative of g_{ij} ;
- choose $\xi_{0,i}$ to cancel the previous contribution in g_{0i} ;
- not possible in theories invariant under FPD's only, since $\xi_0 = \xi_0(t)!$

For Further Reading

For Further Reading

- 🛸 C. Herdeiro, S. Hirano, "Scale invariance and a gravitational model with non-eternal inflation," JCAP 05 (2012) 031.
- 💊 C. Herdeiro, S. Hirano, Y. Sato, "n-DBI gravity," Phys. Rev. D 84 124048 (2011).
- 🛸 F. Coelho, C. Herdeiro, S. Hirano, Y. Sato, "Scalar graviton in *n*-DBI gravity", Phys. Rev. D 86 064009 (2012).

📎 F. Coelho, C. Herdeiro, M. Wang, "*n*-DBI gravity, maximal slicing and the Kerr geometry", Phys. Rev. D 87 047502 (2013).