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Introduction

Higher dimensional black objects and branes are of importance and interest in
several areas of present days physics.

Classical black hole uniqueness theorems fail in higher dimensions;

New type of black objects appear (strings, rings, cigars, etc.);

The properties of possible transitions between the different types, or phases, are of
special interest; [1]

In a recent paper [2], Frolov suggested a simple toy model for studying merger and
topology changing transitions which also shows similarities in certain aspects with

Other topology change transitions in classical and quantum gravity;

Choptuik critical collapse phenomenon [3] (self similarity);

And it also turned out to be a very a useful model in the study of

Holographic phase transition of fundamental matter [4].

[1] B. Kol, Phys. Rep. 422, 119 (2006); [2] V.P. Frolov, Phys. Rev. D 74, 044006 (2006); [3] M.W. Choptuik, Phys. Rev. Lett. 70 9 (1993); [4] D. Mateos,

R.C. Myers and R.M. Thomson, Phys. Rev. Lett. 97 091601 (2006); JHEP 05 067 (2007).
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The brane - black hole toy model

BBH system

The toy model is a static test brane interacting with a bulk static, spherically symmetric
black hole (BBH system). The metric of the bulk N-dimensional space-time is

ds2 = gabdx
adxb = −fdt2 + f−1dr2 + r2dΩ2

N−2 ,

where f = f(r), and dΩ2
N−2 is the metric of the (N − 2)-dimensional unit sphere SN−2.

The explicit form of f is not important, it is assumed only that f(r0) = 0 at the horizon
and it grows monotonically from 0 to 1 at spatial infinity, where it has the asymptotic
form

f = 1−
(r0

r

)N−3

.

Coordinates on the sphere

The coordinates θi(i = 1, . . . , N − 2) on the sphere are given by the relations

dΩ2
i+1 = dθ2i+1 + sin2 θi+1dΩ2

i .
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Bulk and brane coordinates

The bulk coordinates are xa{t, r, θ1, . . . , θN−2}, while the coordinates on the brane

world sheet are ζµ{t, r, θ1, . . . , θD−2}. We assume that D ≤ N − 1 and that the brane is

static and spherically symmetric, so that it’s world sheet geometry possesses the group of

symmetry O(D − 1). If D < N − 1 we choose the brane surface to obey the equation

θD = · · · = θN−2 = π/2.

With this parametrization and symmetry properties the brane world sheet is uniquely

defined by the function
�� ��θD−1 = θ(r) only, and the induced metric on the brane is

γµνdζ
µdζν = −fdt2 +

[
f−1 + r2θ̇2

]
dr2 + r2 sin2 θdΩ2

n.

Dirac-Nambu-Goto action

Test brane configurations in an external gravitational field, gab, can be obtained by
solving the Euler-Lagrange equation from the Dirac-Nambu-Goto action,

S =

∫
dDζ

√
−detγµν , γµν = gab

∂xa

∂ζµ
∂xb

∂ζν
.
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In our case the action simplifies to

S = ∆tAn
∫
L dr with L = rn sinn θ

√
1 + fr2θ̇2 ,

where ∆t is an arbitrary interval of time and An = 2πn/2/Γ(n/2) is the surface
area of a unit n-dimensional sphere. The Euler-Lagrange equation

d

dr

(
∂L
∂θ̇

)
− ∂L
∂θ

= 0

then takes the form

Euler-Lagrange equation

θ̈ +B3θ̇
3 +B2θ̇

2 +B1θ̇ +B0 = 0 ,

B0 = −n cot θ

fr2
, B1 =

n+ 2

r
+
ḟ

f
,

B2 = −n cot θ, B3 = r
[
1
2rḟ + (n+ 1)f

]
.
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Two topologically different solutions

Supercritical solution

For a brane crossing the horizon the EL equation has a regular singular point at r = r0.
A regular solution at this point has the following expansion near it

θ = θ0 + θ̇0(r − r0) + . . . , with θ̇0 =
n cot θ

ḟr2

∣∣∣∣
r0

,

and it is uniquely determined by the initial value θ0.
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Subcritical solution

In the subcritical case the brane does not cross the horizon, and its surface reaches the

minimal distance from the black hole at r1 > r0 which, for symmetry reasons, occurs at

θ = 0. A regular solution near this point has the behavior

θ = η
√
r − r1 + σ(r − r1)3/2 + . . . , η =

√
2(n+ 1)

B3(r)

∣∣∣∣∣
r1

such a solution is also uniquely determined by the parameter r1.

-4 -2 0 2 4
R

1

2

3
Z

Figure: N=6, D=5
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Near horizon behavior

Frolov studied the near critical solutions under the following conditions.

Rindler zone condition

Assuming that the radius R0 of the surface of the intersection of the brane with the bulk
horizon is much smaller than the size of the horizon r0, the space-time close to the bulk
black hole horizon can be approximated by the Rindler space, where the horizon is an
(n+1)-dimensional plane.

And he found that

Properties

The critical solution is an attractor, and both families are attracted to the critical
solution asymptotically;

The close to critical solutions have a self-similar behavior;

There exist a critical dimension D∗ = 6, such that for D > D∗ this symmetry is
continuous, while for D ≤ D∗ it is discrete;

These properties are very similar to the ones in the case of a caged black hole -
black string transition and the Choptuik critical collapse phenomenon.
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Holographic phase transition of fundamental matter

AdS/CFT

The gauge/gravity correspondence is a useful tool to study the nonperturbative physics
of gauge theories in diverse dimensions. The classical supergravity regime corresponds to
the large Nc (strong ’t Hooft coupling) limit of the gauge theory. This allows the study
of a large class of theories that share some of the important features of 4-dimensional
QCD, such as confinement/deconfinement, thermal phase transitions, etc.

Holographic dual picture

In the dual picture, a small number of flavors of fundamental matter,

Nf � Nc

may be described by Nf probe Dq-branes in the gravitational background of Nc probe

Dp-branes. At a sufficiently high temperature T , the background geometry contains a

black hole. It was recently shown that these systems generally undergo a universal first

order phase transition characterized by a change in the behavior of the fundamental

matter. [D. Mateos, R.C. Myers and R.M. Thomson, Phys. Rev. Lett. 97 091601 (2006); JHEP 05 067 (2007)]
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Increasing the temperature increases both the radial position and the energy density
of the event horizon in the Dp-brane throat. For sufficiently small temperature the
probe branes are gravitationally attracted towards the horizon but their tension
balance this attractive force. The probe branes then lie entirely outside the black
hole. This case is called “Minkowski” embedding.

Above a critical temperature Tfun, the gravitational force overcomes the tension
and the branes are pulled into the horizon. Such configurations are referred as
“black hole“ embedding.

In between the two phases, there exists a critical solution which just ”touches“ the
horizon.
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Frolov has shown that in the vicinity of the critical solution the embeddings show a self

similar behavior. As a result multiple solutions exist for a given temperature close to

Tfun. From thermodynamic considerations to select the true ground state, a first order

phase transition reveals at Tfun, where the probe branes jump discontinuously from a

Minkowski to a black hole embedding.
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In the dual field theory this transition is exemplified by discontinuities in the quark

condensate. The most striking feature of this phase transition is found in the mass

spectrum of the mesons (i.e. the quark-antiquark bound states).

Minkowski phase (low-temperature)

The mesons are stable (to leading order within the approximation of large Nc and strong
coupling) and the spectrum is discrete with a finite mass gap.

Black hole phase (high-temperature)

Stable mesons cease to exist, rather one finds a continuous and gapless spectrum.

Hence the first order phase transition is characterized by the dissociation or ”melting“ of
mesons. This physics is particularly interesting in theories that exhibit a confinement/
deconfinement phase transitions such as QCD, where the question of quark
deconfinement has been a long standing problem.
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Gravity side

When the outer boundary is slightly lifted the initial configuration is relaxed to the one
with the least action which is the piecewise limiting configuration drawn below.
A. Flachi, O. Pujolás, M. Sasaki and T. Tanaka, Phys. Rev. D 74, 045013 (2006)
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Thickness corrections

MOTIVATION

Finite ’t Hooft coupling corrections (not too large N) corresponds to higher-derivative
corrections to the D-brane action. These corrections are likely to spoil the scaling
symmetry of the solution close to the critical embedding and hence the self similar
behavior. This may change the structure of the phase transition discussed earlier and
thus would give a more realistic picture of the meson spectrum or the deconfinement.

Curvature corrections to the DNG brane action [B. Carter and R. Gregory, Phys. Rev. D 51 5839 (1995)]

Carter and Gregory showed that the corrections to the Dirac-Nambu-Goto action is in
the quadratic order in the thickness and can be expressed in terms of the intrinsic Ricci
scalar R and the extrinsic curvature scalar K as

S =

∫
dDζ

√
−detγµν

[
−8µ2

3`
(1 + C1R+ C2K

2)

]
, C1 =

π2 − 6

24
`2 , C2 = −1

3
`2.

The thickness ` = 1/µ
√

2λ originates from a φ4 field theoretical domain-wall model

where µ is the mass parameter and λ is the coupling constant of the scalar field.
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The Ricci scalar of the intrinsic metric of the brane can be obtained by the Gauss
formula

Gauss formula

R = K2 −Ka
bK

b
a ≡ K2 −Q ,

and for K and Q we get

Curvature functions

K =
1

F

[
rθ̇ḟ

2
+

B

2F 2
+ (n+ 1)fθ̇ − n cot θ

r

]
,

Q =
1

F 2

[
r2θ̇2ḟ2

4
+

B2

4F 4
+
fθ̇B

F 2
+ f2θ̇2 + n

[
fθ̇ − cot θ

r

]2
]
,

where

F =

√
1 + fr2θ̇2 , B =

[
rḟ + 2f

]
θ̇ + 4rf θ̈ .
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New brane action

The new effective action can be re-expressed as

S = ∆tAn
∫
L dr , L = −8µ2

3`
L0 [1 + εδ] ,

with

ε =
`2

L2
, δ =

[
C1L

2

`2
R+

C2L
2

`2
K2

]
,

1

L
∼ max{K,

√
|R|}.

Euler-Lagrange equation

Since we have now second derivative terms in the Lagrangian, the Euler-Lagrange
equation becomes 4th order

d2

dr2

(
∂L
∂θ̈

)
− d

dr

(
∂L
∂θ̇

)
+
∂L
∂θ

= 0 ,

and can be separated in the following way

d

dr

(
∂L0

∂θ̇

)
− ∂L0

∂θ
− ε

[
d2

dr2

(
∂(L0δ)

∂θ̈

)
− d

dr

(
∂(L0δ)

∂θ̇

)
+
∂(L0δ)

∂θ

]
.
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Perturbative results

Linear perturbation method

θ̃(r) = θ(r) + εϕ(r) + o(ε2),

Perturbation equation

ϕ̈+ q1ϕ̇+ q0ϕ+ q = 0,

with

q1 = B1 + 2θ̇B2 + 3θ̇2B3,

q0 =
n

sin2 θ

[
1

r2f
+ θ̇2

]
,

q = q
(
θ(4), θ(3), θ̈, θ̇, θ, f (3), f̈ , ḟ , f4, f3, f2, f, r

)
.
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Asymptotics

Far distance solution

n = 1 ϕ =
P + P ′ ln r

r
− E1 + E2(1 + ln r)

4r3

n > 1 ϕ =
P

r
+
P ′

rn
+

E

2(n− 3)r3

n = 3 ϕ =
P

r
+
P ′

r3
+
E [1 + 2 ln r]

4r3

Black hole embedding

For the brane crossing the horizon, the source term q has a 1/f singular behavior as
r → r0, and the differential equation has a regular singular point. Requiring regularity
implies the condition:

ϕ̇0 = − 1

m

[
nϕ0

sin2 θ0
+ α0

]
where m = N − 3 and α is a constant depends on the initial conditions. Thus the black

hole embedding perturbations are uniquely determined by the initial value ϕ0.
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Perturbative solutions - supercritical case
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Perturbative solutions - supercritical case
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Minkowski embedding

If the brane does not cross the horizon the brane surface reaches its minimal
distance to the black hole at r = r1 > r0. Near this point θ has the asymptotic
form

θ = η
√
r − r1 + σ(r − r1)3/2 + . . . ,

and one can find that q has a singular behavior

q ∼ c1√
r − r1

+
c3

(r − r1)3/2
+

c5
(r − r1)5/2

,

as r → r1, where

c5 = n(n−1)η
8(n+1)r1

[
2(a+ 2b)(n+ 1)f + (a+ 3b)rḟ

]
r1
,

The perturbation equation near the axis (θ = 0) has the asymptotic form

ϕ̈+
n+ 3

2(r − r1)
ϕ̇+

[
n

4(r − r1)2
+

ξ

r − r1

]
ϕ

+
c1√
r − r1

+
c3

(r − r1)3/2
+

c5
(r − r1)5/2

= 0.
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Perturbative solutions - subcritical case
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Phase transition
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Nonperturbative solution

4th order Euler-Lagrange equation

θ(4) + T1(θ̈, θ̇, θ, ḟ , f, r)θ(3) + T2(θ̈, θ̇, θ, f (3), f̈ , ḟ , f, r) = 0 ,

Black hole embedding asymptotics

y2

f2
+
y1

f
+ y0 + · · · = 0 ,

Minkowski embedding asymptotics

s3

θ3
+
s2

θ2
+
s1

θ
+ s0 + · · · = 0 ,

2-dim problem

θ̇|r1 = ±

√
−(b+ an)

2(2a+ b− an)r2f

∣∣∣∣∣
r1

−(b+ an)

2(2a+ b− an)
≥ 0 n = 1???
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Nonperturbative solutions - subcritical case

∆θ(r) = θ(r)− θDNG(r),
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Nonperturbative solutions - supercritical case
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Nonperturbative solution - Phase transition
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2-dim case

Regularity

A regular solution of the problem must exist although analytic solution could not be
found at the axis of the system. Thus the point r1 on the axis must be a regular
singular point of the differential equation. Even though the brane equation is highly
nonlinear, general results from the theory of local analysis of linear differential
equations can be applied, because we know from physical considerations that the brane
equation should not develop any nontrivial singular points in its domain.

Theorem (Fuchs)

If a solution is not analytic at a regular singular point, its singularity must be either a
pole or an algebraic or logarithmic branch point, and there is always at least one solution
of the form

θ(r) = (r − r1)αA(r) ,

where α is a called the indical exponent and A(r) is a function which is analytic in r1

and has a convergent Taylor series.

α = 1/2 θ(r) = A1

√
r − r1 +A2(r − r1)

3
2 +A3(r − r1)

5
2 +A4(r − r1)

7
2 + . . . .
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Rotating background, work in progress ...

Myers-Perry black hole with a single angular momentum

ds2 = −
(
1− F

Σ

)
dt2 + sin2 θ

[
r2 + a2 (1 + F

Σ
sin2 θ

)]
dϕ2

+ 2aF
Σ

sin2 θdtdϕ+ Σ
∆
dr2 + Σdθ2 + r2 cos2 θdΩ2

N−4 ,

Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − F, F = µr5−N ,

Coordinates

xa = {t, r, ϕ, θ, ϑ1, ..., ϑN−4} , ζµ = {t, r, ϕ, ϑ1, ..., ϑn} , ϑn+1 = · · · = ϑN−4 = π/2 .

Lagrangian

L = rn cosn θ sin θ

√
Σ
(

1 + ∆θ̇2
)
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Asymptotic and regularity analysis

Euler-Lagrange equation

θ̈ +
(
α∆ + ∆̇

2

)
θ̇3 + βθ̇2 +

(
α+ ∆̇

∆

)
θ̇ +

β

∆
= 0,

α =
n

r
+
r

Σ
,

β = n tan θ − cot θ +
a2 sin θ cos θ

Σ
.

Near horizon region

Essentially the same as the Schwarzschild case.

Far distance

Relevant differences.
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Far distance solution

Asymptotic form and equation

θ(r) = θ∞ + ν(r), lim
r→∞

ν(r) = 0.

θ∞ = arctan

[
1√
n

]
, ν̈ +

n+ 3

r
ν̇ +

2(n+ 1)

r2
ν +

a2√n
(n+ 1)r4

= 0.

Asymptotic solution

ν(r) =


p sin[δ(r)]+p′ cos[δ(r)]

r
1+n

2
− a2

√
n

2(n+1)r2
, if n ≤ 4,

p+p′r
√
−γ

r
1+n

2
+

√
−γ
2

− a2
√
n

2(n+1)r2
, if n ≥ 5,

with

δ(r) =

√
γ

2
ln(r), γ = −n2 + 4n+ 4.
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Far distance solution

Figure: N=6, n=1, a=0.4
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Outline
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Summary

Introduction

Toy model for merger transitions;

Brane - black hole setup;

Holographic dual picture;

Instability zone, first order phase transition;

My results

Higher derivative corrections to the action from the brane thickness;

4th order equation of motion;

Linear perturbation method;

Phase transition;

Nonperturbative solution;

2-dim special case;

Rotating background.
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Thank you for your attention.
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