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Motivation:

Scalar fields are a common theme in modern cosmology. They play a
central role in inflation, and they have frequently been used to describe
dark energy in place of the cosmological constant. Classical scalar fields
have also been proposed as possible candidates for the dark matter
component of the universe. One of the SFDM models proposes that
galactic haloes are formed by a Bose-Einstein condensation of a scalar
field (Matos 2000, Arbey 2001).

Given the fact that super-massive black holes seem to exist at the centre
of most galaxies, a scalar field configuration should be stable in the
presence of a central black hole, or at least be able to survive for
cosmological time-scales.
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SFDM

A simple proposal is to consider that dark matter is made of a massive
scalar field, whose properties could explain the behaviour of dark matter
at all scales. The scenario of galactic formation, for instance, is as
follows: a sea of scalar field particles fills the Universe and forms
localized primordial fluctuations that could collapse to form stable
objects, which are interpreted as the dark matter halos of galaxies.
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Scalar fields as cosmological background:

It is assumed that the scalar particles decouple after inflation in the early
universe, after which the field has a simple quadratic potential with no
interactions. Ultra-light particles form a pure ground state condensate
with a high critical temperature behaving like cold dark matter today.
The condition for the formation of BEC in an expanding Universe can be
derived in a simple way if it is assumed that the scalar field particles
reached thermal equilibrium with other particles at early times, then the
thermal evolution of scalar field particles can be described by the
behaviour of the scalar number density of particles nφ during an
adiabatic process.
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The critical temperature below which condensation occurs is found in
terms of the charge density of dark matter particles (the excess of
particles over antiparticles).

qφ := nφ − nφ , nφ =
1

2π2

[
∫ ∞

0

k2 dk

exp[β(Ek − µ(T ))]− 1

]

,

nφ = nφ(−µ(T ))
For high temperatures, m << T , the charge density in excited states is

qφ =
µ(Tφ)

3 T 2
φ .

The maximum charge density allowed by the excited states at a given
temperature occurs when µ = m.
The critical temperature Tc and a critical charge density qφ,c for the
formation of a BEC in an ultra-relativistic Bose gas of SFDM particles are

Tc =

(

3qφ
m

)1/2

, qφ,c =
m

3
T 2
φ ,

The formation of a BEC will happen if the excited states are not able to
accommodate all the bosonic particles qφ > qφ,c.
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The entropy density of an ideal Bose gas is

sφ(Tφ) =
4π2

45
T 3
φ .

If the evolution of SFDM particles proceeds separately at constant
entropy, Sφ = sφa

3 =const, then aTφ =const. Furthermore,
a3qφ =const.
In an adiabatic cosmological expansion it is expected that the
conservation of the charge density is qφ = ηφT

3
φ after decoupling.

The condition qφ,c < qφ for the formation a BEC translates to
Tφ > Tφ,c , where the critical temperature is mainly determined by the
mass of the particle. Given,

Tc =

(

Tφ
Tφ,c

)1/2

Tφ , Tφ,c :=
m

3ηφ
,

as long as Tφ > Tφ,c is satisfied, T < Tc is necessary for the formation of
a BEC.
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When T << Tc the majority of the bosons will condensate to the ground
state. Once the BEC is formed in the early Universe at high
temperatures, its corresponding charge density qBEC is

qBEC = qφ − qφ,c = qφ

(

1− Tφ,c
Tφ

)

,

If the BEC occurs and most particles are in the ground state,

ρDM ≈ (nφ)m , assuming ρ0DM ≈ 23%ρc

with
ρc ≈ 4.19 × 10−11eV, n ≈ ρDM

m
≈ 1012eV ,

For a scalar field of mass of m ∼ 10−23 eV the critical temperature is
Tc ∼ 1.7× 1017eV∼ 1021K which corresponds to a very pure condensate
today (Lundgren et al. 2010). If the scalar particles decouple from regular
matter before Standard model particles annihilate, their temperature will
be about 0.9K and thus Big Bang nucleosynthesis remains unaffected.
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The evolution of the density of the field follows the standard ΛCDM
model at times later than nucleosyntesis a ∼ 10−10. During radiation
domination, the scalar field is a subdominant contribution to the density
of the universe, and during matter domination it might be a replacement
for dark matter. The macroscopically-occupied ground state has ρ ∼ a−6

at early times.
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The idea is to solve the Klein-Gordon equation for the field Φ in the
FRW universe.

ds2 = a(τ)2(−dτ2 + dx2 + dy2 + dz2) , dt = adτ .

The density and the pressure are defined as

ρ =
1

2
(∂tΦ

†∂tΦ+∂jΦ
†∂jΦ+m2|Φ|) , p =

1

2
(∂tΦ

†∂tΦ+∂jΦ
†∂jΦ−m2|Φ|) .

Decomposing the field into modes

Ψ = aΦ =

∫

d3kAkψke
ikx +Hermitian conjugate ,

the KG equation becomes

d2ψk

dτ2
+

[

k2 − a′′

a
+ a2m2

]

ψk = 0 ,
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The Hubble parameter is approximated in different epochs by power laws
of the form H = a′/a2 = H0a

−n. Where n = 2 during the radiation
domination era and n = 3/2 during the matter domination era. In the
Friedman equation, H = 8πG

3 (ρrad + ρΛ + ρm), ρrad ∼ a−4 and
ρm ∼ a−3.
In the radiation domination regime (a′′ = 0) the density for the excited
states is (Lundgren 2010)

ρex =
T 4π4

15
+
T 2H2

12
− m2

12

T 2

a2
+ ... .

Whereas at early times the pressure
and the density of the ground states

ρ0 =
H

3/2
0r

4a6m1/6C0
+
m5/2C0

2H
3/2
0r

,

H0r = 1.4× 10−35eV,

p0 =
H

3/2
0r

4a6m1/6C0
− m5/2C0

2H
3/2
0r

.
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In the matter domination regime n = 3/2

d2ψk

dτ2
+

[

k2 − H2
0m

2a
+ a2m2

]

ψk = 0 ,

H = H0ma
−3/2 with H0m ∼ 7.8 × 10−34eV. For the ground state k = 0

ω0 =
am

C1 sin(2mt+ α) + C2
,

The pressure averages to zero on cosmological scales (the period is ∼
few years for m = 10−23eV ) causing the ground state scalar field
particles to behave like pressureless matter.
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Scalar field fluctuations:

The Compton wave-length associated to this boson (m∼ 10−23eV) is
about kpc that corresponds to the dark-halo size of typical galaxies.

From the equation of scalar fluctuations it is possible to determine a
Jeans length for scalar dark matter and show that modes larger than this
length are growing modes. This fact implies a cut off in the mass power
spectrum that is used to fix the parameters of the model (Matos &
Urena 2008).
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The study of structure formation was done in terms of a linear
perturbation theory (Review: Magana 2012) considering a Newtonian
gauge,

Φ(x, t) = Φ0(t) + δΦ(x, t) , g00 = −a2(1 + 2φ) ,

g0i = 0 , gij = a2(1− 2ψ)δij .

After a decomposition of the form

δΦ(xi, t) =

∫

d3kδΦkexp(ikix
i) ,

The perturbed Klein-Gordon equation takes the form

δΦ̈k +

(

k2

a2
+ V,ΦΦ

)

δΦk = −3HδΦ̇k + 4φ̇Φ̇0 − 2φV,Φ ,

that may have growing solutions depending of the sign of the second
factor.
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Scalar field in galaxies:

Scalar field particles could form gravitationally stable structures made of
particles in quantum coherent states, like boson stars for a complex
scalar field (Colpi et al. 1986, Seidel & Suen 1990, LRR Liebling &
Palenzuela 2012) or oscillatons for a real scalar field (Seidel & Suen
1991, Alcubierre et al. 2002).
It was shown that the scalar field can collapse to form structures of the
size of galaxies.
The stability and gravitational wave signatures of compact scalar stars
have been studied numerically in (Khlopov et at, 1985, Seidel & Suen
1990, Balakrishna et al, 2006).
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In addition, it has been shown that a oscillaton-like solution can be
stable, non-singular and asymptotically flat.
The critical mass of an oscillaton, the maximum mass for which a stable
configuration exists, will depend on the mass of the boson. If one takes

m = 1.1× 10−23eV then Mcrit ∼ 0.6
m2

p

mφ
∼ 1012M⊙, which is of the order

of magnitude of the dark matter content of a standard galactic halo. The
oscillaton is a spherically symmetric solution to the Einstein’s equations

ds2 = −α2(r, t)dt2 + a2(r, t)dr2 + r2dΩ2 ,

coupled to the KG equation. Halos formed from ultra-light scalar with
Compton wavelength of galactic scales do not lead to over-abundance of
dwarf galaxies unlike cold dark matter simulations with heavier bosons
(Navarro et al, 1996, Alcubierre et al. 2002, Salucci et al. 2003).
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The comparison with the observed rotation curves in galaxies seems
promising. Scalar field halos have been fit to rotation curves in spiral
galaxies (Schunk & Liddle 1997, Arbey et al. 2001, Guzman & Urena
2003, Bochmer and Harko 2007). By using the mass and scattering
length as a free parameters to fit rotation curves, it has been obtained a
mass of m = 0.4− 1.6× 10−23eV for non-interacting ultra-light bosons.

Several improvements are needed before concluding that a scalar field is
the best galactic dark matter candidate on the market. It is necessary to
extend the comparison to various types of individual galaxy rotation
curves, with the drawback that more degrees of freedom must be
included in realistic models of the baryonic components gas, bulge, etc.
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Scalar fields around black holes

On the other hand, the dynamics of massless scalar fields around black
holes is a bit different. It can be split into three stages. After a first burst
of radiation depending on the initial configuration, the field undergoes
damped oscillations (quasinormal ringing). Finally, the field follows a
power law decay. caused by backscattering of the background potential.

For a massive field new properties arise.
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We restrict to the case of a scalar field as a test field in the background
of a Schwarzschild black hole (Barranco et al. 2012a, 1212b).
We assume that the energy associated with the scalar field configuration
is very small compared to the mass of the black hole, so that the
gravitational back-reaction associated to the scalar field distribution can
be disregarded (to be consistent with the test field approximation).

The equation of motion for that field is given by the Klein-Gordon
equation

(�− µ2)φ = 0 ,
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Considering a decomposition into spherical harmonics we obtain a family
of reduced equations

[

1

N(r)

∂2

∂t2
− ∂

∂r
N(r)

∂

∂r
+ Uℓ(µ,M ; r)

]

ψℓm = 0 ,

where we have defined

Uℓ(µ,M ; r) :=
ℓ(ℓ+ 1)

r2
+

2M

r3
+ µ2 .
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Initial data

What do we know about stationary solutions?
In order to look for the stationary solutions we make a further
decomposition of the functions ψℓm(t, r) into oscillating modes of the
form:

ψℓm(t, r) = eiωtu(r) ,

with ω a real frequency, and u(r) a complex function of r in the interval
(2M,∞).
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This equation can be rewritten as a time-independent Schrödinger-like
equation:

[

− ∂2

∂r∗2
+ Veff(r

∗)

]

u(r∗) = ω2u(r∗) , −∞ < r∗ <∞,

with the effective potential Veff(r
∗)

defined as

Veff(r
∗) := N(r) Uℓ(µ,M ; r).
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The existence of the potential well. is reflected in a bound for the values
of (Mµ)2

(Mµ)2 < − 1

32
(ℓ2 + ℓ− 1)(ℓ2 + ℓ+ 1)2

+
1

288

√

3(3ℓ4 + 6ℓ3 + 5ℓ2 + 2ℓ+ 3)3 ,

The condition 0 < ω2 < µ2 guarantee that the solution for the scalar
field decays exponentially at spatial infinity and is “localized” close to the
black hole, but the scalar field can still escape towards the black hole
horizon.
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All purely stationary solutions, i.e. those with real ω, require waves to
move outward from the horizon to compensate for the waves that tunnel
out through the barrier and move toward the horizon (otherwise the
situation would not be stationary). Imposing the condition of no waves
coming out from the horizon clearly improves the situation at the cost of
introducing complex valued frequencies ω. When ω is complex the
solution corresponds to quasi-bound states (Detweiler 1981, Ohashi 2004,
Cardoso & Yoshida 2005, Dolan 2007) in the usual Boyer Lindquist
foliation.
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Time evolution

The numerical evolution was performed in penetrating coordinates. We
use ingoing Eddington-Finkelstein coordinates

ds2 = −
(

1− 2M

r

)

dt̄2 +
4M

r
dt̄dr +

(

1 +
2M

r

)

dr2 + r2 dΩ2 .

This coordinate system covers a region that includes the black hole
interior r ∈ (0,∞), and is regular at the horizon.

We define a set of functions given
by first order derivatives, and obtain
a system of the form
∂t~Ψ+B∂r~Ψ = S.

ip

im

scrp

scrm

hor

sing
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We start constructing configurations that are arbitrarily close to the
quasi-stationary solutions in the following way:

Choose any stationary solution that decays at spatial infinity and set it to
zero by hand in the interval r ∈ (2M, 2M + ǫ), for some small parameter
ǫ > 0 with dimensions of length.

The resulting configuration can be seen as a combination of the
stationary solution plus a perturbation around the horizon. The frequency
was taken as the real part of the frequency for quasi-bound state.
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We construct pseudo-resonant initial data configurations for different
values of ℓ and Mµ, and for each pair of these parameters we study the
states up to the fifth mode.
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In the test field limit all configurations have the conserved energy
E =

∑

ℓ,m

Eℓm, with

Energy associated to the time killing vector field

Eℓm =

∫ ∞

2M
ρE(r)dr ,

and where

ρE(r) =
1

2

(

1

N(r)

∣

∣

∣

∣

∂ψℓm

∂t

∣

∣

∣

∣

2

+N(r)

∣

∣

∣

∣

∂ψℓm

∂r

∣

∣

∣

∣

2

+ Uℓ(µ,M ; r)|ψℓm|2
)

This quantity is given by the conserved charge Qa =
∫

Σ ka
µTµνn

ν√γ dΣ.
We used this quantity to monitor the state of the configuration.
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and the first pseudo-resonant mode
n = 1, for configurations with different
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Our attention was mainly focused on the evolution of the
pseudo-resonant states.
We start by evaluating the total energy loss and studying some spectral
characteristics of the different configurations by means of a time Fourier
analysis, and finish with more explicit considerations about how long such
configurations can last.
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The energy shows a exponential decay of the form

E(t) = E0 exp(−s t/M) ,

with s constant, except for some
very small oscillations that remain
during the whole evolution. Given
the exponential decay that
dominates the overall behaviour, we
can perform a linear fit of ln(E/E0)
as a function of t/M to calculate
the parameter s.

0.0 5.0×10
4

1.0×10
5

1.5×10
5

t/M

0.01

0.1

1

E
/E

0

n=1
n=2
n=3
n=4
n=5

0 100 200
0.990

0.995

1

Juan Carlos Degollado (UA) Dynamics of scalar fields around black holes. 31 / 41



0 2×10
4

4×10
4

6×10
4

8×10
4

1×10
5

t/M

0.01

0.1

1

E
/E

0

µM=0.2
µM=0.25
µM=0.3
µM=0.35

0 100 200
0.998

0.999

1

Energy of the scalar field vs. time for the evolution of the initial data
corresponding to the first (n = 1) pseudo-resonant mode with ℓ = 1, and
Mµ = 0.2, 0.25, 0.3 and 0.35.
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Discrete Fourier transform in time for the evolution of non-resonant data
with Mµ = 0.3, ℓ = 1, and frequency ωx = 0.29664794.
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Fig: The Fourier transform in time vs. frequency for the evolution of the
resonant data with Mµ = 0.3, ℓ = 1, and frequency corresponding to the
second pseudo-resonant mode.
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We also construct a two-parameter family of initial data, of the form

u0(r) =

{

N(r −R1)
4(r −R2)

4 for R1 ≤ r ≤ R2

0 otherwise
,

During the initial stages of the evolution some SF falls into the BH, while
some is radiated away, both with rates that depend greatly on the initial
data chosen. However, at late times, all evolutions show a similar steady
behaviour with slow accretion into the BH. Similar results are obtained
when studying the long-term evolution of a variety of configurations,
some of them very different in size and spatial distribution.
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We found that the real part of the frequency of the quasi-resonant modes
are very close with the frequency of the stationary and dynamical
resonances, and that the imaginary part coincides with the decay rate of
the dynamical resonances.

However numerical roundoff errors make it still prohibitive to obtain
accurately very small values for the imaginary part of the quasi-resonant
frequencies.

For the KG Potential, the quasi-resonant modes can be obtained
semi-analytically in several ways, the most common are the continued
fraction method introduced by (Leaver 1985), and the WKB approach
(Iyer 1986)
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An analytic expression valid in the limit Mµ≪ 1 is known (Detweiler
1980).
For ℓ = 1, the imaginary part of the frequency for the first quasi-resonant
mode in this limit is given by Im(Mω) = (Mµ)10/6.
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There are two distinct regions of the parameter space of physical interest
for which the configurations live longer than the age of the Universe:

A scalar field mass smaller than
1 eV and black hole mass
smaller than 10−17M⊙,
consistent with primordial black
holes with an axion distribution
(Sikivie 2009);

An ultra-ligh scalar field with
mass smaller than 10−23 eV
(Hu 2000, Matos 2000) and a
supermassive black holes with
mass smaller than 5× 1010M⊙,
as could be the case for a dark
matter halo surrounding a black
hole at a galactic center (Arbey
2001).
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The interaction of a Klein-Gordon field with a Schwarzschild black hole
has been considered in the test field approximation. We have found
dynamically long-lived dynamical scalar field configurations that, for
values of Mµ . 10−3, can survive in the vicinity of the BH for
cosmological time scales.
Although we were unable to reach very small values for the combination
Mµ by means of numerical simulations we match our results with other
methods to show that such configurations are possible.
Also our results seem to indicate that, at late times, even quite generic
distributions evolve as a combination of the dynamical resonant modes,
which can last for cosmological time-scales.
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Thanks!
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