Goldstone gravity from spontaneous Lorentz violation

Robertus Potting¹

¹CENTRA and Physics Departament Faculdade de Ciências e Tecnologia Universidade do Algarve Faro, Portugal

CENTRA, IST, Lisbon, May 7th, 2013

Work in collaboration with V. Alan Kostelecký

Outline

1 Symmetry vs. Broken Symmetry

2 The bumblebee

- Quantum effects
- 6 Conclusions and future work

Masslessness from symmetry or broken symmetry

Gauge Symmetries

Generator of unbroken gauge symmetry \Rightarrow massless vector boson

General Relativity

Diffeomorphism invariance \Rightarrow massless gravitons

Spontaneously Broken Global Symmetry

Spontaneously broken global symmetry $\ \Rightarrow\$ massless Nambu-Goldstone boson

Nambu-Jona-Lasinio model (1961)

$$\mathcal{L} = i\bar{\psi}\partial\!\!\!/\psi + \frac{\lambda}{4} \big((\bar{\psi}\psi)(\bar{\psi}\psi) - (\bar{\psi}\gamma^5\psi)(\bar{\psi}\gamma^5\psi) \big)$$

invariant under ordinary and chiral phase rotations:

$$\begin{split} \psi &\to e^{i\alpha}\psi, & \bar{\psi} \to \bar{\psi}e^{-i\alpha} \\ \psi &\to e^{i\alpha\gamma_5}\psi, & \bar{\psi} \to \bar{\psi}e^{i\alpha\gamma_5} \end{split}$$

Mass term breaks chiral symmetry.

But: possibility of chiral condensate $\langle \bar{\psi}\psi \rangle$:

- Spontaneously breaks chiral symmetry
- Yields effective mass term
- Broken symmetry leads to massless Goldstone boson

Bjorken (1963): "emergent photons"

$$\mathcal{L} = ar{\psi}(i\partial \!\!\!/ - m)\psi + rac{G}{2}(ar{\psi}\gamma_{\mu}\psi)(ar{\psi}\gamma^{\mu}\psi)$$

- Nonvanishing fermion condensate carrying vacuum current possible
- Dynamics can be interpreted in terms of photon in temporal gauge
- Lorentz-violating effects can be suppressed by taking G very large

Nambu (1968): QED in nonlinear gauge

$$\mathcal{L}=-rac{1}{4} extsf{F}_{\mu
u} extsf{F}^{\mu
u}+ar{\psi}(i\partial\!\!\!/-m)\psi-e\! extsf{A}_{\mu}ar{\psi}\gamma^{\mu}\psi$$

with A_{μ} subject to the constraint

$$A^2_\mu = M^2$$

- $M \neq 0$ implies Lorentz-violating expectation value for A_{μ}
- No Lorentz-violating physical effects assumed: constraint merely implies Lorentz-violating choice of gauge

Can Lorentz invariance be spontaneously broken in gauge theories?

- In usual models of particle physics with gauge symmetry non-derivative potential terms are not gauge invariant
- **2** However, in string field theory terms like $\phi A_{\mu}A^{\mu}$ appear. If ϕ acquires a vev of the right sign, this can trigger a vev for the vector field (Kostelecky, R.P. '92)
- Other models with possibility of spontaneous LIV: loop quantum gravity, spacetime foam, ...
- Recently-performed lattice simulations suggest that Lorentz-breaking fermionic condensates can form in large N strongly-coupled lattice gauge theories. (Tomboulis '10, '11)

(Effective) field theory without gauge invariance

Assume nonderivative potential for vector field: (Kostelecky, Samuel '89; Krauss, Tomboulis '02; Nielsen et.al. '07)

$$\mathcal{L} = -rac{1}{4} \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u} - \mathcal{V}(\mathcal{A}_{\mu}\mathcal{A}^{\mu}) + \mathcal{L}_{matter}(\psi,\mathcal{A}_{\mu})$$

Here V is a potential that has a local minimum for either timelike or spacelike A_{μ} , at which we have the constraint

$$A_{\mu}^2 = \pm M^2$$

Example 1: Mexican hat potential $V(A_{\mu}A^{\mu}) = -\mu^2 A_{\mu}A^{\mu} + \kappa (A_{\mu}A^{\mu})^2$ Example 2: Lagrange multiplier potential $V(A_{\mu}A^{\mu}) = \lambda (A_{\mu}A^{\mu} \pm M^2)$ Consequence: A_{μ} acquires vacuum expectation value \bar{A}_{μ}

photons as Nambu-Goldstone modes

Fluctuations of A_{μ} around vacuum expectation value: $A_{\mu} = \bar{A}_{\mu} + a_{\mu}$ Lagrangian for fluctuations:

$$\mathcal{L}=-rac{1}{4}f_{\mu
u}-V(ar{A}_{\mu},a_{\mu})$$

Goldstone bosons identified by inifitesimal Lorentz transformations on vector vev's:

$$a_\mu = - \Theta_\mu{}^
u(x) ar{A}_
u$$

with

$$\Theta_{\mu}{}^{\nu} = \begin{pmatrix} 0 & \beta_1 & \beta_2 & \beta_3 \\ -\beta_1 & 0 & \theta_3 & -\theta_2 \\ -\beta_2 & -\theta_3 & 0 & \theta_1 \\ -\beta_3 & \theta_2 & -\theta_1 & 0 \end{pmatrix} \qquad \beta_i = \bar{\beta}_i e^{ik \cdot x}, \quad \theta_i = \bar{\theta}_i e^{ik \cdot x}$$

Symmetry vs. Broken Symmetry The bumblebee The car

photons as Nambu-Goldstone modes

Example: purely timelike vector with only $A_0 \neq 0$ Three Goldstone bosons:

$$m{a}_{\mu}=-\Theta_{\mu0}=egin{pmatrix}0\eta_{1}\eta_{2}\eta_{3}\end{pmatrix}$$

Every choice of vev corresponds to a different gauge: temporal, axial, ... Three Goldstone bosons can be decomposed in:

- 2 transverse modes: $k^{\mu}\epsilon^{trans}_{\mu} = 0$
- 1 longitudinal mode: $\epsilon_{\mu}^{long} = k_{\mu} rac{ar{A}^{lpha} a_{lpha}}{ar{A}^{lpha} A_{lpha}} ar{A}_{\mu}$

Longitudinal mode does not propagate due to gauge invariant kinetic term_

photons as Nambu-Goldstone modes

Bumblebee Lagrangian:

- has no gauge invariance
- Lorentz invariance is spontaneously broken
- Masslessness of vector field is direct consequence of Lorentz breaking (Goldstone boson)
- Maxwell theory is "emergent" phenomenon

Further properties

Quantum corrections:

- In general, it is expected that integrating out massive modes can yield gauge non-invariant derivative terms in effective action:
- Possible terms with two derivatives: $f_1(A^2)\partial_\mu A_\nu \partial^\mu A^\nu$, $f_2(A^2)\partial_\mu A_\nu \partial^\nu A^\mu$, $f_3(A^2)A^\mu A^\alpha \partial_\mu A_\nu \partial_\alpha A^\nu$, $f_4(A^2)A^\nu A^\alpha \partial_\mu A_\nu \partial_\alpha A^\mu$, $f_5(A^2)A^\mu A^\nu A^\alpha \partial_\mu A_\nu \partial^\mu A_\alpha$, $f_6(A^2)A^\nu A^\alpha \partial_\mu \partial_\nu A_\alpha$, $f_7(A^2)A^\mu A^\nu A^\alpha A^\beta \partial_\mu A_\nu \partial_\alpha A_\beta$
- This will give rise to (small) Lorentz-violating physical effects, such as:
 - Anisotropic propagation
 - Birefringence
 - Iongitudinal mode can become propagating

Renormalization

Fixed points of Renormalization Group

- Interesting to consider behaviour of theory under (Wilson) renormalization group
- Gaussian fixed point exists that is UV stable in certain directions of linearized RG flow (Altschul, Kostelecky '05)
- These relevant directions of RG flow correspond to asymptotically free theory with nonpolynomial interactions, similar to behaviour for scalar fields (Halpern, Huang '95)
- These potentials exhibit stable nontrivial minima for $A_{\mu}A^{\mu}$, implying "spontaneous bumblebee potential"!

Symmetry vs. Broken Symmetry The bumblebee The car

Linearized "Cardinal" dynamics (V.A. Kostelecky and R.P., GRG 37 (2005) 1675)

gravitons as Nambu-Goldstone modes

$$L = \frac{1}{2} C^{\mu\nu} K_{\mu\nu\alpha\beta} C^{\alpha\beta} + V(C^{\mu\nu}, \eta_{\mu\nu})$$

 $\mathcal{K}_{\mu\nu\alpha\beta} = -\partial^2(\eta_{\mu\alpha}\eta_{\nu\beta} - \frac{1}{2}\eta_{\mu\nu}\eta_{\alpha\beta}) + \partial_\mu\eta_{\nu\alpha}\partial_\beta + \partial_\nu\eta_{\mu\alpha}\partial_\beta$

- $K_{\mu\nu\alpha\beta}$: ghost-free quadratic kinetic operator for spin 2; $C^{\mu\nu}$: tensor density; $\eta_{\mu\nu}$: background metric
- V: scalar potential built out of the 4 independent scalars $X_1 = C^{\mu\nu}\eta_{\nu\mu}, X_2 = (C\cdot\eta\cdot C\cdot\eta)^{\mu}_{\mu,\dots}$
- kinetic term invariant under $C^{\mu\nu} \rightarrow C^{\mu\nu} \partial^{\mu}\Lambda^{\nu} \partial^{\nu}\Lambda^{\mu}$; invariance broken by V!
- V acquires minimum for $C^{\mu\nu} = c^{\mu\nu} \equiv \langle C^{\mu\nu} \rangle \neq 0$: spontaneous breaking of Lorentz symmetry
- Generally all six Lorentz generators are broken; Special situation may arise with three or five broken generators (Carroll et.al. '09)

Linearized "Cardinal" dynamics

At low energy, assume V can be approximated by sum of delta-functions that fix the 4 independent scalars: $V = \sum_{n=1}^{4} \frac{\lambda_n}{n} X_n$

Fluctuations around vev: $C^{\mu
u} = c^{\mu
u} + \tilde{C}^{\mu
u}$

equations of motion:

$$K_{\mu
ulphaeta} ilde{\mathcal{C}}^{lphaeta} - \lambda_1\eta_{\mu
u} - \lambda_2(\eta c\eta)_{\mu
u} - \lambda_3(\eta c\eta c\eta)_{\mu
u} - \lambda_4(\eta c\eta c\eta c\eta)_{\mu
u} = 0$$

constraints:

$$ilde{C}^{\mu}_{\mu}=0 \qquad c^{\mu
u} ilde{C}_{\mu
u}=0 \qquad (c\eta c)^{\mu
u} ilde{C}_{\mu
u}=0 \qquad (c\eta c\eta c)^{\mu
u} ilde{C}_{\mu
u}=0$$

Low-energy dynamics of $\tilde{C}_{\mu\nu}$ -fluctuations around vev equal to linearized general relativity (in axial-type gauge)!

Counting degrees of freedom

Propagating massless degrees of freedom

• Can be considered Nambu-Goldstone modes of spontanously broken Lorentz generators $\mathcal{E}_{\mu}{}^{\alpha}$:

$$ilde{\mathcal{C}}_{\mu
u} = \mathcal{E}_{\mu}{}^{lpha} \pmb{c}_{lpha
u} + \mathcal{E}_{
u}{}^{lpha} \pmb{c}_{\mulpha}$$

- Equations of motion imply masslessness $\partial^2 \tilde{C}_{\mu\nu} = 0$ and Lorenz conditions $\partial^\mu \tilde{C}_{\mu\nu} = 0$
- Number of propagating massless degrees of freedom: 6 4 = 2

Comparison between bumblebee and cardinal model

	Photon	Graviton
# Goldstone modes	3	6
Equivalent gauge condition	Temporal / axial	Cardinal
# massive modes	1	4
<i># transverse modes</i>	2	2
# longitudinal modes	1	1
Kinetic term	Maxwell	Einstein-Hilbert

Bootstrap in General Relativity

Write metric as Minkowski + fluctuations (gravitons):

$$g^{\mu
u} = \eta^{\mu
u} + h^{\mu
u}$$

Quadratic action for (free) gravitons: $\mathcal{L}_{GR}^{L} = \frac{1}{2} h^{\mu\nu} K_{\mu\nu\alpha\beta} h^{\alpha\beta}$

Linear coupling to matter EM

$$\mathcal{L} \supset h^{\mu
u} au_{\mu
u}$$

- $\tau_{\mu\nu}$: trace-inversed energy-momentum tensor
- linear coupling to EM-tensor gives rise to linearized Einstein equation

$$K_{\mu\nu\alpha\beta}h^{\alpha\beta}\equiv R^{L}_{\mu\nu}=\tau_{\mu\nu}$$

consistent coupling

consistent coupling to total EM tensor

 require coupling to total EM tensor, including contribution of gravitational fluctuations (Gupta '52; Kraichnan '55; Feynman '57)

$$K_{\mu
ulphaeta}h^{lphaeta}= au_{h}^{(1)}{}_{\mu
u}$$

- $\tau_{h\ \mu\nu}^{(1)}$ is quadratic in $h^{\mu\nu}$, necessitating inclusion of cubic term in lagrangian
- cubic term yields new contribution to EM-tensor $\tau_h^{(2)}{}_{\mu\nu} \Rightarrow$ quartic term in Lagrangian
- etc., etc.

After resumming all terms one obtains Einstein-Hilbert action!

Cardinal bootstrap (V.A. Kostelecky and R.P., Phys. Rev. D (2009))

Deser's procedure

- bootstrap can be done in one step using procedure developed by Deser for GR (Deser '70)
- use trace-reverted field: $\ensuremath{\mathfrak{L}}^{\mu
 u} = \ensuremath{\mathcal{C}}^{\mu
 u} + rac{1}{2} \eta^{\mu
 u} \ensuremath{\mathcal{C}}^{lpha}_{lpha}$
- can rewrite original linearized cardinal dynamics using Palatini formalism with auxiliary field $\Gamma^{\alpha}_{\mu\nu}$:

$$\mathcal{L}^{L} = \mathfrak{A}^{\mu\nu} (\Gamma^{\alpha}_{\mu\nu,\alpha} - \Gamma_{\mu,\nu}) + \eta^{\mu\nu} (\Gamma^{\alpha}_{\mu\nu} \Gamma_{\alpha} - \Gamma^{\alpha}_{\beta\mu} \Gamma^{\beta}_{\alpha\nu})$$

1 step coupling

- \bullet Have to include coupling to energy-momentum tensor of \mathcal{L}^L in self-consistent manner
- Use Rosenfeld method, promoting $\eta^{\mu\nu}$ to variable metric density and partial derivatives to $\eta^{\mu\nu}$ -covariant ones.

Cardinal bootstrap

It follows:
$$-\frac{1}{2}\tau_{\mu\nu} = \frac{\delta \mathcal{L}^{L}}{\delta \eta^{\mu\nu}} = \Gamma^{\alpha}_{\mu\nu}\Gamma_{\alpha} - \Gamma^{\alpha}_{\beta\mu}\Gamma^{\beta}_{\alpha\nu} + \text{total derivative}$$

Full nonlinear action obtained by coupling nonderivative part of $\tau_{\mu\nu}$ as source for $\pounds^{\mu\nu}$:

$$\mathcal{L} = \mathcal{L}^{L} + \mathfrak{L}^{\mu\nu} (\Gamma^{\alpha}_{\mu\nu} \Gamma_{\alpha} - \Gamma^{\alpha}_{\beta\mu} \Gamma^{\beta}_{\alpha\nu})$$

final result for kinetic term

recursive process yields nonlinear "bootstrapped" action

$$\int d^4 x \left(\mathfrak{L}^{\mu\nu} (\Gamma^{\alpha}_{\mu\nu,\alpha} - \Gamma_{\mu,\nu}) + (\eta + \mathfrak{L})^{\mu\nu} (\Gamma^{\alpha}_{\mu\nu} \Gamma_{\alpha} - \Gamma^{\alpha}_{\beta\mu} \Gamma^{\beta}_{\alpha\nu}) \right)$$
$$\equiv \int d^4 x (\eta + \mathfrak{L})^{\mu\nu} R_{\mu\nu} (\Gamma)$$

Thus $(\eta + \mathfrak{L})^{\mu\nu}$ is naturally interpreted as curved-space metric density!

Bootstrap of matter tensor and scalar potential

Bootstrap can also be applied to scalar potential and matter EM tensor

- flat-space matter EM-tensor yields curved-space matter lagrangian with metric density $(\eta + \mathfrak{C})^{\mu\nu}$: $\mathcal{L}_{M,\mathfrak{C}} = \sqrt{|\eta + \mathfrak{C}|} \mathcal{L}_{M,\mathfrak{C}}^{L}|_{\eta \to \eta + \mathfrak{C}}$
- procedure compatible with scalar potential depending only on $C^{\mu\nu}$ and background Minkowski metric $\eta_{\mu\nu}$

integrability conditions

- Bootstrap requires V satisfy integrability conditions
- Conditions satisfied only by particular solutions, e.g.:

1,
$$\mathfrak{X}_1$$
, $\mathfrak{X}_2 - \frac{\mathfrak{X}_1^2}{2}$, $\mathfrak{X}_3 - \frac{3\mathfrak{X}_1\mathfrak{X}_2}{4} + \frac{\mathfrak{X}_1^3}{8}$, ...
 $(\mathfrak{X}_1 = \mathfrak{C}^{\mu\nu}n_{\mu\nu}\mathfrak{X}_2 = (\mathfrak{C} \cdot n \cdot \mathfrak{C} \cdot n)^{\mu}_{\mu\nu} \dots \text{ etc.})$

• Particular linear combination yields cosmological constant $\sqrt{|\eta+\mathfrak{C}|}$

Bootstrap of scalar potential

integrable scalar potentials

Particularly interesting: Scalar potentials of the form

$$V(\{\mathfrak{X}_i\}) = rac{1}{2}\sum_{i,j}m_{ij}(\mathfrak{X}_i-\mathfrak{x}_i)(\mathfrak{X}_j-\mathfrak{x}_j) + \mathcal{O}(\mathfrak{X}_i-\mathfrak{x}_i)^3$$

with local minimum at $\mathfrak{X}_i = \mathfrak{x}_i \ (i = 1 \dots 4)$

- Represent possibly stable vacuum
- Integrability and stability highly nontrivial conditions
- Limit $m_{ij}
 ightarrow \infty$ corresponds to bootstrap of linearized limit

$$V^{L} = \lambda_1(\mathfrak{X}_1 - \mathfrak{x}_1) + \lambda_2(\mathfrak{X}_2 - \frac{\mathfrak{X}_1^2}{2} - \mathfrak{x}_2 + \frac{\mathfrak{x}_1^2}{2}) + \dots$$

Vacuum energy-momentum tensor

Bootstrapped Lagrangian

 $(\eta + \mathfrak{L})^{\mu\nu} R_{\mu\nu}(\Gamma) - \sqrt{-|\eta + \mathfrak{L}|} V(\mathfrak{X}_1, \mathfrak{X}_2, \mathfrak{X}_3, \mathfrak{X}_4) + L_{matter}(\mathfrak{L}, \eta, \phi_i, \partial_\mu \phi_i)$

Linearized equations of motion

$$\mathcal{K}_{\mu\nu\alpha\beta}\mathbf{h}^{\alpha\beta} = (\eta_{\mu\nu}\partial_1 + 2\eta_{\mu\alpha}\mathbf{c}^{\alpha\beta}\eta_{\beta\nu}\partial_2 + ...)\mathbf{V} + \tau^{(m)}_{\mu\nu}(\eta,\phi_i,\partial_\mu\phi_i)$$

$$\partial_n \equiv \frac{\partial}{\partial X_n} \qquad X_n = (C \cdot \eta)^n \qquad (n = 1 \dots 4)$$

"vacuum energy-momentum tensor"

$$\mathcal{T}^{(\mathsf{vac})}_{\mu
u} = au^{(\mathsf{vac})}_{\mu
u} - rac{1}{2}\eta_{\mu
u} ig(au^{(\mathsf{vac})}ig)^lpha_lpha.$$

where

$$\tau_{\mu\nu}^{(\mathsf{vac})} = (\eta_{\mu\nu}\partial_1 + 2\eta_{\mu\alpha}C^{\alpha\beta}\eta_{\beta\nu}\partial_2 + ...)V$$

Vacuum energy-momentum tensor (cont.)

Explicit solutions

- Explicit solutions of linearized equations of motion can be obtained for $h^{\mu\nu}$ with nonzero vacuum energy-momentum tensor
- Initial/boundary values can be defined on suitable initial timelike/spacelike spacetime slices (4 independent functions)

Conservation and initial conditions

If matter EM tensor conserved independently, same is true for vacuum EM tensor

then

Choosing $T_{\mu\nu}^{(vac)}$ to be zero at suitable initial timelike/spacelike spacetime slices ensures it is zero at all spacetime

Quantum effective action

Quantum effective action

- Kinetic term not protected by gauge invariance
- Upon integrating out massive modes, one can expect quantum corrections to the kinetic term for gravitons; also, the 4 auxiliary modes may become propagating (Carroll et.al. '09)
- This yields Lorentz-violating corrections to Lagrangian; possible effects:
 - Anisotropic graviton propagation
 - Graviton bi-refringence
 - Possibility of cosmic rays emitting gravi-Cherenkov radiation

Conclusions

- Construction of alternative theory of gravity possible
- Natural explanation of masslessness of gravitons as Nambu-Goldstone modes of spontaneously broken Lorentz symmetry; no need to invoke gauge invariance
- Nonlinear lagrangian from requirement of consistent coupling to total energy-momentum tensor
- Low-energy Lagrangian corresponds to Einstein-Hilbert action
- Full Lagrangian includes 4 massive graviton modes
- Integrability conditions for potential very restrictive
- "Vacuum energy-momentum tensor" may arise
- Quantum effective action can turn auxiliary modes propagating at low energy

Future work

- Classification of all integrable and bootstrapped potentials
- What is the behaviour of the theory at high energies/temperatures?
- Cosmological implications of vacuum energy-momentum tensor?
- Investigate stability in presence of quantum corrections
- Investigate behaviour of theory under (Wilson) renormalization group: does possibility exist of renormalization group flow with nonpolynomial potential in IR?
- Extension of cardinal model: extra massless modes (ex. combination with bumblebee)?

