## The Sun as a Particle Physics Laboratory

### Pat Scott

#### Department of Physics, McGill University

#### Dec 14, 2012

Based on: Vincent, PS & Trampedach 1206.4315 (JCAP submitted) PS, Savage, Edsjö & IceCube Collab. 1207.0810 (JCAP 11:57 2012) Silverwood, PS, Danninger, et. al. 1210.0844 (JCAP submitted)

Slides available from www.physics.mcgill.ca/~patscott













Why the Sun?

Solar neutrino telescope data  $\rightarrow$  new physics Light bosons and the solar abundance problem

## Solar observables sensitive to new physics





 $\begin{array}{l} \mbox{Why the Sun?} \\ \mbox{Solar neutrino telescope data} \rightarrow \mbox{new physics} \\ \mbox{Light bosons and the solar abundance problem} \end{array}$ 

## Solar observables sensitive to new physics

#### helioseismology

- solar structure
  - $\rightarrow$  exotic *E* transport



Lopes, Silk, Cumberbatch, Casanellas, Taoso, Bottino, Frandsen et al



## Solar observables sensitive to new physics

#### helioseismology

- solar structure
  - $\rightarrow$  exotic *E* transport

#### neutrinos

• neutrino properties (mixings, etc)



Davis, Bahcall, SNO, Super-Kamiokande, Borexino, etc



## Solar observables sensitive to new physics

#### helioseismology

- solar structure
  - $\rightarrow$  exotic *E* transport

#### neutrinos

- neutrino properties (mixings, etc)
- solar core T
  - $\rightarrow$  exotic *E* transport



Gould, Raffelt, Taoso, Lopes, Silk, Casanellas, Serenelli, et a

## Solar observables sensitive to new physics

#### helioseismology

- solar structure
  - $\rightarrow$  exotic *E* transport

#### neutrinos

- neutrino properties (mixings, etc)
- solar core T
   → exotic E transport
- exotic *ν* production
   → dark matter annihilation



Steigmann, Silk, Olive, Gaisser, Bergström, Edsjö, PS, Savage, et al



## Solar observables sensitive to new physics

#### helioseismology

- solar structure
  - $\rightarrow$  exotic *E* transport

#### neutrinos

- neutrino properties (mixings, etc)
- solar core  $T \rightarrow$  exotic E transport
- exotic *ν* production
   → dark matter annihilation

### solar spectrum

new opacity source/sink



#### Vincent, PS & Trampedach



## Solar observables sensitive to new physics

#### helioseismology

- solar structure
  - $\rightarrow$  exotic *E* transport

#### neutrinos

- neutrino properties (mixings, etc)
- solar core  $T \rightarrow$  exotic E transport
- exotic *ν* production
   → dark matter annihilation
- solar spectrum
  - new opacity source/sink
- new particle production
  - $\bullet \ \rightarrow \text{direct axion searches}$



#### Raffelt, Sikivie, CAST, et al



## Solar observables sensitive to new physics

### helioseismology

- solar structure
  - $\rightarrow$  exotic *E* transport

#### neutrinos

- neutrino properties (mixings, etc)
- solar core  $T \rightarrow$  exotic E transport
- exotic *ν* production
   → dark matter annihilation
- solar spectrum
  - new opacity source/sink
- new particle production
  - $\bullet \ \rightarrow \text{direct axion searches}$





## Outline



### Why the Sun?



### Solar neutrino telescope data $\rightarrow$ new physics



ight bosons and the solar abundance problem



## What we know about dark matter



#### Must be:

- massive (gravitationally-interacting)
- unable to interact via the electromagnetic force (dark)
- non-baryonic
- "cold(ish)" (in order to allow structure formation)
- stable on cosmological timescales
- produced with the right relic abundance in the early Universe.

#### Good options:

- Weakly Interacting Massive Particles (WIMPs)
- sterile neutrinos
- gravitinos
- axions
- axinos
- hidden sector dark matter (e.g. WIMPless\_dark\_matter)

# What we know about dark matter



#### Must be:

- massive (gravitationally-interacting)
- unable to interact via the electromagnetic force (dark)
- non-baryonic
- "cold(ish)" (in order to allow structure formation)
- stable on cosmological timescales
- produced with the right relic abundance in the early Universe.

#### Good options:

- Weakly Interacting Massive Particles (WIMPs)
- sterile neutrinos Bad options:
- gravitinos

- axions axinos

- primordial black holes
  - MAssive Compact Halo Objects (MACHOs)
  - standard model neutrinos
- hidden sector dark matter (e.g. WIMPless dark matter)

The Sun as a Particle Physics Laboratory Pat Scott - Dec 14 2012 - CENTRA Seminar

## What we know about dark matter



#### Must be:

- massive (gravitationally-interacting)
- unable to interact via the electromagnetic force (dark)
- non-baryonic
- "cold(ish)" (in order to allow structure formation)
- stable on cosmological timescales
- produced with the right relic abundance in the early Universe.

#### Good options:

- Weakly Interacting Massive Particles (WIMPs)
- sterile neutrinos Bad options:
- gravitinos

primordial black holes

axions

MAssive Compact Halo Objects (MACHOs)

axinos

- standard model neutrinos
- hidden sector dark matter (e.g. WIMPless dark matter)

The Sun as a Particle Physics Laboratory Pat Scott – Dec 14 2012 – CENTRA Seminar

## WIMPs at a glance

- Dark because no electromagnetic interactions
- Cold because very massive ( $\sim$ 10 GeV to  $\sim$ 10 TeV)
- Non-baryonic and stable no problems with BBN or CMB
- Weak-scale annihilation cross-sections *naturally* lead to a relic abundance of the right order of magnitude



# WIMPs at a glance

- Many theoretically well-motivated particle candidates
  - Supersymmetric (SUSY) neutralinos  $\chi$  if *R*-parity is conserved lightest mixture of neutral higgsinos and gauginos
  - Inert Higgses extra Higgs in the Standard Model
  - Kaluza-Klein particles extra dimensions
  - right-handed neutrinos, sneutrinos, other exotic things...
- $\bullet\,$  Weak interaction means scattering with nuclei  $\rightarrow$  detection channel
- Many WIMPs are Majorana particles (own antiparticles)
  - $\implies$  self-annihilation cross-section



The Sun as a Particle Physics Laboratory

Pat Scott - Dec 14 2012 - CENTRA Seminar

## How to find WIMPs with neutrino telescopes



## How to find WIMPs with neutrino telescopes

The short version:

Halo WIMPs crash into the Sun





- Halo WIMPs crash into the Sun
- Some lose enough energy in the scatter to be gravitationally bound





- Halo WIMPs crash into the Sun
- Some lose enough energy in the scatter to be gravitationally bound
- Scatter some more, sink to the core





- Halo WIMPs crash into the Sun
- Some lose enough energy in the scatter to be gravitationally bound
- Scatter some more, sink to the core
- Annihilate with each other, producing high-*E* neutrinos



- Halo WIMPs crash into the Sun
- Some lose enough energy in the scatter to be gravitationally bound
- Scatter some more, sink to the core
- Annihilate with each other, producing high-*E* neutrinos
- Propagate+oscillate their way to the Earth, convert into muons in ice/water



- Halo WIMPs crash into the Sun
- Some lose enough energy in the scatter to be gravitationally bound
- Scatter some more, sink to the core
- Annihilate with each other, producing high-*E* neutrinos
- Propagate+oscillate their way to the Earth, convert into muons in ice/water
- Look for Čerenkov radiation from the muons in IceCube, ANTARES, etc



# The IceCube Neutrino Observatory

- 86 strings
- 1.5–2.5 km deep in Antarctic ice sheet
- ~125 m spacing between strings
- ~70 m in DeepCore (10× higher optical detector density)
- 1 km<sup>3</sup> instrumented volume (1 Gton)





# What can the muon signal tell me?

Roughly:

**Number** – how much annihilation is going on in the Sun  $\implies$  info on  $\sigma_{SD}$ ,  $\sigma_{SI}$  and  $\langle \sigma v \rangle$  **Spectrum** – sensitive to WIMP mass  $m_{\chi}$  and branching fractions *BF* into different annihilation channels *X* **Direction** – how likely it is that they come from the Sun

In model-independent analyses a lot of this information is either discarded or not given with final limits

#### Goal:



## What can the muon signal tell me?

The focus here is supersymmetry (SUSY) – but this is really just a framework, applicable to any model.

#### Goal:



## What can the muon signal tell me?

The focus here is supersymmetry (SUSY) – but this is really just a framework, applicable to any model.

All the methods discussed here are available in DarkSUSY 5.0.6: www.darksusy.org

#### Goal:



## What can the muon signal tell me?

The focus here is supersymmetry (SUSY) – but this is really just a framework, applicable to any model.

All the methods discussed here are available in DarkSUSY 5.0.6: www.darksusy.org

All IceCube data used are available at http://icecube.wisc.edu/science/data/ic22-solar-wimp (and in DarkSUSY, for convenience)

#### Goal:



## SUSY Scanning with IceCube – Simple Likelihood

Simplest way to do anything is to make it a counting problem...

Compare observed number of events *n* and predicted number  $\theta$  for each model, taking into account error  $\sigma_{\epsilon}$  on acceptance:

$$\mathcal{L}_{\text{num}}(n|\theta_{\text{BG}} + \theta_{\text{sig}}) = \frac{1}{\sqrt{2\pi}\sigma_{\epsilon}} \int_{0}^{\infty} \frac{(\theta_{\text{BG}} + \epsilon\theta_{\text{sig}})^{n} e^{-(\theta_{\text{BG}} + \epsilon\theta_{\text{sig}})}}{n!} \frac{1}{\epsilon} \exp\left[-\frac{1}{2} \left(\frac{\ln\epsilon}{\sigma_{\epsilon}}\right)^{2}\right] d\epsilon .$$
(1)

Nuisance parameter  $\epsilon$  takes into account systematic errors on effective area, from theory, etc.  $\sigma_{\epsilon} \sim 20\%$  for IceCube.

More complicated version also uses arrival direction and energy of every individual neutrino



# Example: SUSY Scanning with IceCube – IN/OUT-type scans

Detection reach of full IceCube+DeepCore experiment in 25-parameter version of supersymmetry

Compared to direct detection experiments:



The Sun as a Particle Physics Laboratory

Pat Scott - Dec 14 2012 - CENTRA Seminar

# Example: SUSY Scanning with IceCube – IN/OUT-type scans

Detection reach of full IceCube+DeepCore experiment in 25-parameter version of supersymmetry

Compared to limits from the Large Hadron Collider:



The Sun as a Particle Physics Laboratory Pat Scott – Dec 14 2012 – CENTRA Seminar

# SUSY Scanning with IceCube – Statistics 101

Why simple IN/OUT analyses are not enough:...

- Only partial goodness of fit, no measure of convergence, no idea how to generalise to regions or whole space.
- Frequency/density of models in IN/OUT scans means essentially nothing.
- More information comes from a global statistical fit.

#### $\implies$ parameter estimation exercise

Composite likelihood made up of observations from all over:

- dark matter relic density from WMAP
- precision electroweak tests at LEP
- LEP limits on sparticle masses
- *B*-factory data (rare decays,  $b \rightarrow s\gamma$ )
- muon anomalous magnetic moment
- LHC searches, direct detection (only roughly implemented for now).

Example: SUSY Scanning with IceCube – Global Fits

# CMSSM, IceCube-22 events $m_0-m_{1/2}$ and $m_{\chi_1^0}$ -nuclear scattering cross-sections



Contours indicate  $1\sigma$  and  $2\sigma$  credible regions Grey contours correspond to fit *without* IceCube data Shading+contours indicate **relative** probability only, not overall goodness of fit



Example: SUSY Scanning with IceCube – Global Fits

# **Base Observables**





Example: SUSY Scanning with IceCube – Global Fits

# Base Observables + XENON-100

#### Grey contours correspond to Base Observables only





Example: SUSY Scanning with IceCube – Global Fits

# Base Observables + XENON-100 + CMS 5 $fb^{-1}$







Example: SUSY Scanning with IceCube – Global Fits

# Base Observables + XENON-100 + CMS 5 fb<sup>-1</sup> + IC22 $\times$ 100

Grey contours correspond to Base Observables only



CMSSM, IceCube-22 with 100  $\times$  boosted effective area (kinda like IceCube-86+DeepCore)



## Example: Model Recovery



The Sun as a Particle Physics Laboratory Pat Scott – Dec 14

Pat Scott - Dec 14 2012 - CENTRA Seminar

## Outline





#### Solar neutrino telescope data $\rightarrow$ new physics



### Light bosons and the solar abundance problem



## The solar abundance problem

- Latest solar photospheric abundances (Asplund, Grevesse, Sauval & PS: AGS05, AGSS09) factor of ~2 less than old ones (Grevesse & Sauval: GS98)
- Messes up inferred sound speed profile, helium abundance and depth of convection zone from helioseismology
- Many solutions attempted in the last decade; none really successful



## Axions, ALPs and impacts on solar abundances

- What if the problem was due to impacts of new particles in the photosphere on spectral line formation?
- e.g. effective reduction in opacity due to conversion of photons to axion-like particles (which are not absorbed)



The Sun as a Particle Physics Laboratory

Pat Scott - Dec 14 2012 - CENTRA Seminar

## Allowed parameter space

• Unfortunately, this is experimentally ruled out – by a long way:



## Allowed parameter space

• Unfortunately, this is experimentally ruled out – by a long way:



 What about similar models of light bosons? Chameleons? Hidden photons?



## Allowed parameter space

• Unfortunately, this is experimentally ruled out – by a long way:



- What about similar models of light bosons? Chameleons? Hidden photons?
- Requirements and limits can be recast
  - $\rightarrow$  necessary parameter combinations also well ruled out



## Allowed parameter space

• Unfortunately, this is experimentally ruled out – by a long way:



- What about similar models of light bosons? Chameleons? Hidden photons?
- Requirements and limits can be recast
  - $\rightarrow$  necessary parameter combinations also well ruled out
- ⇒ Light bosons cannot impact solar photospheric abundances

# **Closing remarks**

- The Sun is just as useful for particle physicists as astronomers
- Neutrino searches for WIMP annihilation in the solar core are a prime example
  - Event-level neutrino likelihood extensions and real IceCube data are available in DarkSUSY 5.0.6
  - Direct SUSY analyses of IC79 data are in progress
  - Many models exist that only IC86 will be sensitive to
  - The codes can be used equally well for non-SUSY BSM scenarios too
- Axions, ALPs, chameleons or hidden photons are not the solution to the solar abundance problem...
- ... but the problem is definitely at the stage of being 'fair game' for new physics!!



Backup Slides

## Outline



The Sun as a Particle Physics Laboratory Pat Scott – Dec 14 2012 – CENTRA Seminar



Pippi – parse it, plot it PS 1206.2245 (Eur. Phys. J Plus 127:138 2012) http://github.com/patscott/pippi

Generic pdfLaTeX sample parser, post-processor & plotter



## CMS 5 fb<sup>-1</sup> analyses



**Backup Slides** 

## XENON-100 100-day analysis



