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Solar neutrino telescope data — new physics

e Solar neutrino telescope data — new physics
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Solar neutrino telescope data — new physics

w about dark matter

Must be:
@ massive (gravitationally-interacting)

© © 6 0 ©

unable to interact via the electromagnetic force (dark)
non-baryonic

“cold(ish)” (in order to allow structure formation)

stable on cosmological timescales

produced with the right relic abundance in the early Universe.

Good options:

©

Qo
Qo
Q
Qo

Qo

Weakly Interacting Massive Particles (WIMPs)
sterile neutrinos

gravitinos
axions tay)
axinos e

hidden sector dark matter (e.g. WIMPless dark matter)
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Solar neutrino telescope data — new physics

o Dark because no electromagnetic interactions
o Cold because very massive (~10 GeV to ~10 TeV)
@ Non-baryonic and stable - no problems with BBN or CMB

o Weak-scale annihilation cross-sections naturally lead to a
relic abundance of the right order of magnitude
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Solar neutrino telescope data — new physics

@ Many theoretically well-motivated particle candidates
o Supersymmetric (SUSY) neutralinos y if R-parity is conserved -
lightest mixture of neutral higgsinos and gauginos
o Inert Higgses - extra Higgs in the Standard Model
o Kaluza-Klein particles - extra dimensions
o right-handed neutrinos, sneutrinos, other exotic things. ..
o Weak interaction means scattering with nuclei — detection
channel
o Many WIMPs are Majorana particles (own antiparticles)
— self-annihilation cross-section

Standard particles SUSY particles

T~

L~
d Higgsino

P99@
S

Quarks @ Lestons @ Force particies Sauarks @ sieptons @ SUSY forcs
parties
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Solar neutrino telescope data — new physics

IMPs with neutrino telescopes

The short version:
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Solar neutrino telescope data — new physics

IMPs with neutrino telescopes

The short version: k
@ Halo WIMPs crash into the Sun

© Some lose enough energy in the scatter to
be gravitationally bound

© Scatter some more, sink to the core \y}‘//
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Solar neutrino telescope data — new physics

IMPs with neutrino telescopes

The short version: k
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Solar neutrino telescope data — new physics

IMPs with neutrino telescopes

The short version: k
@ Halo WIMPs crash into the Sun

© Some lose enough energy in the scatter to
be gravitationally bound

Q Scatter some more, sink to the core \¥Z/
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T
high-E neutrinos /’ \\

Q@ Propagate+oscillate their way to the Earth, ' :

convert into muons in ice/water
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Solar neutrino telescope data — new physics

IMPs with neutrino telescopes

The short version: k
@ Halo WIMPs crash into the Sun

© Some lose enough energy in the scatter to
be gravitationally bound

© Scatter some more, sink to the core \y}‘//

Q@ Annihilate with each other, producing B

T
high-E neutrinos /’ \\

Q@ Propagate+oscillate their way to the Earth, ' :
convert into muons in ice/water

@ Look for Cerenkov radiation from the \
muons in lceCube, ANTARES, etc
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Solar neutrino telescope data — new physics

Neutrino Observatory

o 86 strings

o 1.5-2.5km deep in
Antarctic ice sheet

o ~125m spacing
between strings

@ ~70m in DeepCore
(10x higher optical I b

detector density) o
o 1km3 instrumented / A 8 ac densely
o instrumented
VOlume (1 Gton) strings
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Solar neutrino telescope data — new physics

muon signal tell me?

Roughly:
Number — how much annihilation is going on in the Sun
= info on ogp, ogr and (oVv)
Spectrum — sensitive to WIMP mass m, and branching
fractions BF into different annihilation channels X
Direction — how likely it is that they come from the Sun

In model-independent analyses a lot of this information is either
discarded or not given with final limits

Use as much of this information on osp, osi, (ov), m, and
BF(X) as possible to directly constrain specific points and
regions in WIMP model parameter spaces (+LHC+DD-+...)

£
33
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Solar neutrino telescope data — new physics

e muon signal tell me?

The focus here is supersymmetry (SUSY) — but this is
really just a framework, applicable to any model.

Use as much of this information on osp, osi, (ov), m, and
BF(X) as possible to directly constrain specific points and
regions in WIMP model parameter spaces (+LHC+DD+...)
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Solar neutrino telescope data — new physics

e muon signal tell me?

The focus here is supersymmetry (SUSY) — but this is
really just a framework, applicable to any model.

All the methods discussed here are available in
DarkSUSY 5.0.6: www.darksusy.org

Use as much of this information on osp, osi, (ov), m, and
BF(X) as possible to directly constrain specific points and
regions in WIMP model parameter spaces (+LHC+DD+...)
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Solar neutrino telescope data — new physics

> muon signal tell me?

The focus here is supersymmetry (SUSY) — but this is
really just a framework, applicable to any model.

All the methods discussed here are available in
DarkSUSY 5.0.6: www.darksusy.org

All IceCube data used are available at
http://icecube.wisc.edu/science/data/ic22-solar-wimp
(and in DarkSUSY, for convenience)

Use as much of this information on osp, osi, (ov), m, and
BF(X) as possible to directly constrain specific points and
regions in WIMP model parameter spaces (+LHC+DD+...)
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Solar neutrino telescope data — new physics

ing with IceCube — Simple Likelihood

Simplest way to do anything is to make it a counting problem. ..

Compare observed number of events n and predicted number 6
for each model, taking into account error o, on acceptance:

1 % (fpg + €y, ) e (BcTebsie) 1 1 /Ine\?
ﬁnum(n‘eBG+95ig) = oy /(; (6sc L)nl Ze)(p 75 (U—) de.

Nuisance parameter ¢ takes into account systematic errors on
effective area, from theory, etc. o. ~ 20% for IceCube.

More complicated version also uses arrival direction and
energy of every individual neutrino
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Solar neutrino telescope data — new physics

SUSY Scanning with lceCube —

Detection reach of full IceCube+DeepCore experiment in
25-parameter version of supersymmetry

Compared to direct detection experiments:

E 107 ’,; 103 Silverwood et al 2012
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Solar neutrino telescope data — new physics

SUSY Scanning with lceCube —
pe scans

Detection reach of full IceCube+DeepCore experiment in
25-parameter version of supersymmetry

Compared to limits from the Large Hadron Collider:

Siverwood et al 2012
10*

Not excludable
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eV)
o
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50 excludable
CMS 2012 Limit
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Lightest neutralino mass m, (GeV)
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Solar neutrino telescope data — new physics

ng with IceCube — Statistics 101

Why simple IN/OUT analyses are not enough:. ..

@ Only partial goodness of fit, no measure of convergence,
no idea how to generalise to regions or whole space.

o Frequency/density of models in IN/OUT scans means
essentially nothing.

@ More information comes from a global statistical fit.
— parameter estimation exercise

Composite likelihood made up of observations from all over:
@ dark matter relic density from WMAP

precision electroweak tests at LEP

LEP limits on sparticle masses

B-factory data (rare decays, b — sv)

muon anomalous magnetic moment

LHC searches, direct detection (only roughly implemented for now)
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Solar neutrino telescope data — new physics

USY Scanning with IlceCube — Global Fits

CMSSM, IceCube-22 events
mo—my /> and mX?—nucIear scattering cross-sections

10 —42 B e i TN =38 T TR ™
[ 1 1C22 global fit r 1022 global fit 7
r 7 E flat priors 4 _39 flat pri 1
r 1M 43 - onssM >0 — [ CMSSM 41 ]
3 = - r Marg. posterior | r Marg, posterior §
r 1 ] 40 -
; [ il £ | EG % 5 9
g 2 B 1 g -1 3
o ] 5 F ]
£ r 18 s AW = r 9
[ ] [ ] £ 42 a
L ml L. o2 L ]
r 1 L 4 —43 = —
L CMSSM 41> 0 [ ] r |
L Marg. posterior | [ e Mean ] e Mean ]

PRI U TN RIS R v e b b by
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.8 1.

my (TeV) myg (TeV) myy (TeV)

Contours indicate 1o and 20 credible regions
Grey contours correspond to fit without IceCube data

Shading+contours indicate relative probability only, not overall goodness of fit
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Solar neutrino telescope data — new physics

USY Scanning with IlceCube — Global Fits

Base Observables
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Solar neutrino telescope data — new physics

USY Scanning with IlceCube — Global Fits

Base Observables + XENON-100

Grey contours correspond to Base Observables only
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Solar neutrino telescope data — new physics

USY Scanning with IlceCube — Global Fits

Base Observables + XENON-100 + CMS5fb—

Grey contours correspond to Base Observables only
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Solar neutrino telescope data — new physics

USY Scanning with IlceCube — Global Fits

Base Observables + XENON-100 + CMS5fb—
+ 1C22x100

Grey contours correspond to Base Observables only
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CMSSM, IceCube-22 with 100x boosted effective area
(kinda like lceCube-86+DeepCore)
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Solar neutrino telescope data — new physics
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Light bosons and the solar abundance problem

© Light bosons and the solar abundance problem
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Light bosons and the solar abundance problem

ndance problem

o Latest solar photospheric abundances (Asplund, Grevesse, Sauval & PS:
AGS05, AGSS09) factor of ~2 less than old ones (Grevesse & Sauval: GS98)

o Best atomic data, highly accurate observations, new 3D
modelling, NLTE corrections, improved agreement with solar
neighbourhood = highly reliable

@ Messes up inferred sound oois . . Mg o St 4200
. . AGS05 R
speed profile, helium jasson —
abundance and depth of ]
convection zone from

helioseismology

éc/c

0.005 - -

0.000 [~ —

@ Many solutions attempted in

the last decade; none really ;.

SuCCeSSful 0.0 0.2 0.4 R/R 0.6 0.8 1.0 i”i;
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Light bosons and the solar abundance problem

S and impacts on solar abundances

@ What if the problem was due to impacts of new particles in
the photosphere on spectral line formation?

o e.g. effective reduction in opacity due to conversion of
photons to axion-like particles (which are not absorbed)
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Light bosons and the solar abundance problem

parameter space

o Unfortunately, this is experimentally ruled out — by a long way:

Solar abundance resolutinn\
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Light bosons and the solar abundance problem

parameter space

o Unfortunately, this is experimentally ruled out — by a long way:

Solar abundance resolutinn\

s

@ What about similar
models of light bosons?
Chameleons?

Hidden photons?

Ing(gm/GCV_l)

i
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Iu\\mw
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Light bosons and the solar abundance problem

parameter space

o Unfortunately, this is experimentally ruled out — by a long way:

Solar abundance resolutinn\
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Light bosons and the solar abundance problem

o Unfortunately, this is experimentally ruled out — by a long way:

Solar abundance resolution \

s

@ What about similar
models of light bosons?
Chameleons?

Hidden photons?

Requirements and limits
can be recast

— necessary parameter
combinations also well
ruled out

— Light bosons cannot
impact solar photospheric ;wq
abundances
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Light bosons and the solar abundance problem

@ The Sun is just as useful for particle physicists as
astronomers

@ Neutrino searches for WIMP annihilation in the solar core
are a prime example

o Event-level neutrino likelihood extensions and real IceCube
data are available in DarkSUSY 5.0.6

o Direct SUSY analyses of IC79 data are in progress

o Many models exist that only IC86 will be sensitive to

o The codes can be used equally well for non-SUSY BSM
scenarios too

o Axions, ALPs, chameleons or hidden photons are not the
solution to the solar abundance problem. ..

o ...but the problem is definitely at the stage of being ‘fair an
game’ for new physics!! Oy
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Pippi — parse it, plot it
PS 1206.2245 (Eur. Phys. J Plus 127:138 2012)
http://github.com/patscott/pippi

L3

Generic pdfLaTeX sample parser, post-processor & plotter Ch
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